1887

Abstract

Three Gram-negative bacterial strains (Cmf 17.2, Rd 20.33 and Cmf 18.22) isolated from reared clams in Galicia were subjected to a taxonomic study, based on genetic and phenotypic characterization. Analysis of the 16S rRNA gene allowed the identification of the strains as members of the genus , sharing the highest similarity with CECT 5080 (97.8 %–98.5 % 16S rRNA gene sequence similarity). Phylogenetic analysis of the sequences showed that the three isolates formed two different groups distantly related to their closest relative, . DNA–DNA hybridizations were performed to confirm the taxonomic position and the results were below the recommended threshold for species delimitation, specifically 44.5 % (Cmf 17.2 with CECT 5080) and 55 % (Cmf 18.22with CECT 5080). Furthermore, the average nucleotide identity (ANIb, ANIm and OrthoANI) and estimated DNA–DNA reassociation values among Cmf 17.2, Cmf 18.22 and CECT 5080 were in all cases below the respective threshold for species differentiation. The estimated G+C content of the genomic DNA was found to be 45.3 % (Cmf 17.2) and 44.6 % (Cmf 18.22). The principal fatty acids of the strains were found to be summed feature 3 (C ω7/Cω6), summed feature 8 (Cω7/Cω6), C, C and C 3-OH. The results obtained on the characterization of the clam isolates indicate that they represent two novel species of the genus , for which the names sp. nov. (type strain Cmf 17.2=CECT 9049=LMG 29243) and sp. nov. (type strain Cmf 18.22=CECT 9050=LMG 29244) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001170
2016-08-01
2020-01-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/3183.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001170&mimeType=html&fmt=ahah

References

  1. Auch A. F., von Jan M., Klenk H.-P., Göker M.. 2010a; Digital DNA-DNA hybridization for microbial species delineation by means of genome-to-genome sequence comparison. Stand Genomic Sci2:117–134 [CrossRef]
    [Google Scholar]
  2. Auch A. F., Klenk H.-P., Göker M.. 2010b; Standard operating procedure for calculating genome-to-genome distances based on high-scoring segment pairs. Stand Genomic Sci2:142–148 [CrossRef]
    [Google Scholar]
  3. Baumann P., Baumann L.. 1981; The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas and Alcaligenes . In The Prokaryotes pp.1302–1331 Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schleger H. G.. Berlin, Germany: Springer-Verlag;
    [Google Scholar]
  4. Bolger A. M., Lohse M., Usadel B.. 2014; Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics30:2114–2120 [CrossRef][PubMed]
    [Google Scholar]
  5. Chimetto L. A., Cleenwerck I., Brocchi M., Willems A., De Vos P., Thompson F. L.. 2011; Marinomonas brasilensis sp. nov., isolated from the coral Mussismilia hispida, and reclassification of Marinomonas basaltis as a later heterotypic synonym of Marinomonas communis . Int J Syst Evol61:1170–1175[CrossRef]
    [Google Scholar]
  6. Espinosa E., Marco-Noales E., Gómez D., Lucas-Elío P., Ordax M., Garcías-Bonet N., Duarte C. M., Sanchez-Amat A.. 2010; Taxonomic study of Marinomonas strains isolated from the seagrass Posidonia oceanica, with descriptions of Marinomonas balearica sp. nov. and Marinomonas pollencensis sp. nov. Int J Syst Evol Microbiol60:93–98 [CrossRef][PubMed]
    [Google Scholar]
  7. Goris J., Suzuki K., de Vos P., Nakase T., Kersters K.. 1998; Evaluation of a microplate DNA–DNA hybridization method compared with the initial renaturation method. Can J Microbiol44:1148–1153[CrossRef]
    [Google Scholar]
  8. Ivanova E. P., Onyshchenko O. M., Christen R., Lysenko A. M., Zhukova N. V., Shevchenko L. S., Kiprianova E. A.. 2005; Marinomonas pontica sp. nov., isolated from the Black Sea. Int J Syst Evol Microbiol55:275–279 [CrossRef][PubMed]
    [Google Scholar]
  9. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  10. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. et al. 2007; clustal w and clustal x version 2.0. Bioinformatics23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  11. Lee I., Kim Y. W., Park S. C., Chun J.. 2015; OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol in press doi: [CrossRef]
    [Google Scholar]
  12. Macián M. C., Arahal D. R., Garay E., Pujalte M. J.. 2005; Marinomonas aquamarina sp. nov., isolated from oysters and seawater. Syst Appl Microbiol28:145–150 [CrossRef][PubMed]
    [Google Scholar]
  13. MacFaddin J. F.. 1993; Pruebas bioquímicas para la identificación de bacterias de importancia clínica (translation by Médica Panamericana SA). Baltimore: Williams & Wilkins (in Spanish);
  14. Meier-Kolthoff J. P., Auch A. F., Klenk H. P., Göker M.. 2013; Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics14:60 [CrossRef][PubMed]
    [Google Scholar]
  15. Nurk S., Bankevich A., Antipov D., Gurevich A., Korobeynikov A., Lapidus A., Prjibelsky A., Pyshkin A., Sirotkin A. et al. 2013; Assembling genomes and Mmni-metagenomes from highly chimeric reads. Lect N Bioinformat7821:158–170
    [Google Scholar]
  16. Richter M., Rosselló-Móra R.. 2009; Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA106:19126–19131 [CrossRef][PubMed]
    [Google Scholar]
  17. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  18. Solano F., Sanchez-Amat A.. 1999; Studies on the phylogenetic relationships of melanogenic marine bacteria: proposal of Marinomonas mediterranea sp. nov. Int J Syst Bacteriol49:1241–1246 [CrossRef][PubMed]
    [Google Scholar]
  19. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  20. Van Landschoot A., De Ley J.. 1983; Intra- and Intergeneric Similarities of the rRNA Cistrons of Alteromonas, Marinomonas (gen. nov.) and Some Other Gram-negative Bacteria. J Gen Microbiol129:3057–3074 [CrossRef]
    [Google Scholar]
  21. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K.-H., Ludwig W., Glöckner F. O., Rosselló-Móra R.. 2008; The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol31:241–250 [CrossRef][PubMed]
    [Google Scholar]
  22. Yarza P., Yilmaz P., Pruesse E., Glöckner F. O., Ludwig W., Schleifer K.-H., Whitman W. B., Euzéby J., Amann R. et al. 2014; Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol12:635–645 [CrossRef]
    [Google Scholar]
  23. Zhang D. C., Li H. R., Xin Y. H., Liu H. C., Chen B., Chi Z. M., Zhou P. J., Yu Y.. 2008; Marinomonas arctica sp. nov., a psychrotolerant bacterium isolated from the Arctic. Int J Syst Evol Microbiol58:1715–1718 [CrossRef][PubMed]
    [Google Scholar]
  24. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R.. 1998; Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol48:179–186 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001170
Loading
/content/journal/ijsem/10.1099/ijsem.0.001170
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error