1887

Abstract

An agarose- and alginate-assimilating, Gram-reaction-negative, non-motile, rod-shaped bacterium, designated strain SA2, was isolated from the gut of a turban shell sea snail () collected near Noto Peninsula, Ishikawa Prefecture, Japan. The 16S rRNA gene sequence of strain SA2 was 99.59 % identical to that of DSM 19141 and 98.19 % identical to that of DSM 17657. This suggested that strain SA2 could be a subspecies of or . However, DNA–DNA hybridization results showed only 37.5 % relatedness to DSM 19141 and 44.7 % relatedness to DSM 17657, which was far lower than the 70 % widely accepted to define common species. Strain SA2 could assimilate agarose as a sole carbon source, whereas strains DSM 19141 and DSM 17657 could not assimilate it at all. Furthermore, results using API 20NE and API ZYM kits indicated that their enzymic and physiological phenotypes were also different. These results suggested that strain SA2 represented a novel species within the genus . The major isoprenoid quinone in SA2 was Q-8, and its major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. The major fatty acids were summed feature 3, (comprising Cω6 and/or Cω7), C, and summed feature 8 (comprising Cω6 and/or Cω7). The DNA G+C content of SA2 was 40.7 mol%. The name proposed for this novel species of the genus is sp. nov., with the type strain designated SA2 (=DSM 29824=NBRC 111146).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001165
2016-08-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/3164.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001165&mimeType=html&fmt=ahah

References

  1. Badur A. H., Jagtap S. S., Yalamanchili G., Lee J. K., Zhao H., Rao C. V. 2015; Characterization of the alginate lyases from Vibrio splendidus 12B01. Appl Environ Microbiol1865–1873[CrossRef]
    [Google Scholar]
  2. Barrow G. I., Feltham R. K. A.. 1993; Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press;[CrossRef]
    [Google Scholar]
  3. Baumann P., Baumann L.. 1984; Genus II. Photobacterium Beijerinck 1889, 401AL . In Bergey’s Manual of Systematic Bacteriologyvol. 1 pp.539–545 Edited by Krieg N. R., Holt J. G.. Baltimore: Williams & Wilkins;
    [Google Scholar]
  4. Baumann P., Schubert R. H. W.. 1984; Genus II. Vibrionaceae Veron 1965, 5245AL . In Bergey’s Manual of Systematic Bacteriologyvol. 1 , pp.516–517 Edited by Krieg N. R., Holt J. G.. Baltimore: Williams & Wilkins;
    [Google Scholar]
  5. Bernardet J. F., Nakagawa Y., Holmes B. 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol52:1049–1070 [CrossRef][PubMed]
    [Google Scholar]
  6. Bleicher A., Neuhaus K., Scherer S.. 2010; Vibrio casei sp. nov., isolated from the surfaces of two French red smear soft cheeses. Int J Syst Evol Microbiol60:1745–1749 [CrossRef][PubMed]
    [Google Scholar]
  7. Bligh E. G., Dyer W. J.. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol37:911–917 [CrossRef][PubMed]
    [Google Scholar]
  8. Collins M. D.. 1994; Isoprenoid quinones. In Chemical Methods in Prokaryotic Systematics , pp.265–309 Edited by Goodfellow M., O’Donnell A. G.. Wiley: Chichester;
    [Google Scholar]
  9. Dong J., Hashikawa S., Konishi T., Tamaru Y., Araki T.. 2006; Cloning of the novel gene encoding β-agarase C from a Marine Bacterium, Vibrio sp. strain PO-303, and characterization of the gene product. Appl Environ Microbiol72:6399–6401 [CrossRef][PubMed]
    [Google Scholar]
  10. Eck R. V., Dayhoff M. O.. 1966; Atlas of Protein Sequence and Structure Silver Springs, MD: National Biomedical Research Foundation;
    [Google Scholar]
  11. Ezaki T., Hashimoto Y., Yabuuchi E.. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol39:224–229[CrossRef]
    [Google Scholar]
  12. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376[PubMed][CrossRef]
    [Google Scholar]
  13. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791[CrossRef]
    [Google Scholar]
  14. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416[CrossRef]
    [Google Scholar]
  15. Fu W., Han B., Duan D., Liu W., Wang C.. 2008; Purification and characterization of agarases from a marine bacterium Vibrio sp. F-6. J Ind Microbiol Biotechnol35:915–922 [CrossRef][PubMed]
    [Google Scholar]
  16. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M.. 2007; DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol57:81–91 [CrossRef][PubMed]
    [Google Scholar]
  17. Inoué T., Osatake H.. 1998; A new drying method of biological specimens for scanning electron microscopy: the t-butyl alcohol freeze-drying method. Arch Histol Cytol51:53–59
    [Google Scholar]
  18. Jukes T. H., Cantor C. R.. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism , pp.21–132 Edited by Munro H. N.. New York: Academic Press;[CrossRef]
    [Google Scholar]
  19. Kim D., Baik K. S., Hwang Y. S., Choi J. S., Kwon J., Seong C. N.. 2013; Vibrio hemicentroti sp. nov., an alginate lyase-producing bacterium, isolated from the gut microflora of sea urchin (Hemicentrotus pulcherrimus). Int J Syst Evol Microbiol63:3697–3703 [CrossRef][PubMed]
    [Google Scholar]
  20. Kim M., Oh H. S., Park S. C., Chun J.. 2014; Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Bacteriol64:346–351 [CrossRef]
    [Google Scholar]
  21. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing EzTaxon: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  22. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  23. Lee I., Kim Y. O., Park S. C., Chun J.. 2015; OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int J Syst Evol Microbiol [CrossRef]
    [Google Scholar]
  24. Liao L., Xu X. W., Jiang X. W., Cao Y., Yi N., Huo Y. Y., Wu Y. H., Zhu X. F., Zhang X. Q., Wu M.. 2011; Cloning, expression, and characterization of a new β-agarase from Vibrio sp. strain CN41. Appl Environ Microbiol77:7077–7079 [CrossRef][PubMed]
    [Google Scholar]
  25. Mal M., Wong S.. 2011; A HILIC-based UPLC/MS method for the separation of lipid classes from plasma. Waters Appl Note1–5http://www.waters.com/webassets/cms/library/docs/720004048en.pdf
    [Google Scholar]
  26. Mazzella N., Molinet J., Syakti A. D., Dodi A., Doumenq P., Artaud J., Bertrand J. C.. 2004; Bacterial phospholipid molecular species analysis by ion-pair reversed-phase HPLC/ESI/MS. J Lipid Res45:1355–1363 [CrossRef][PubMed]
    [Google Scholar]
  27. Meier-Kolthoff J. P., Auch A. F., Klenk H. P., Markus Goker M.. 2013; Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics14:60 [CrossRef][PubMed]
    [Google Scholar]
  28. Miller J. H.. 1992; A Short Course in Bacterial Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  29. Minnikin D. E., Collins M. D., Goodfellow M.. 1979; Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol47:87–95[CrossRef]
    [Google Scholar]
  30. Nam Y. D., Chang H. W., Park J. R., Kwon H. Y., Quan Z. X., Park Y. H., Kim B. C., Bae J. W.. 2007; Vibrio litoralis sp. nov., isolated from a Yellow Sea tidal flat in Korea. Int J Syst Evol Microbiol57:562–565 [CrossRef][PubMed]
    [Google Scholar]
  31. Nei M., Kumar S.. 2000; Molecular Evolution and Phylogenetics New York: Oxford University Press;
    [Google Scholar]
  32. Perry L. B.. 1973; Gliding motility in some non-spreading flexibacteria. J Appl Bacteriol36:227–232[PubMed][CrossRef]
    [Google Scholar]
  33. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  34. Sawabe T., Sugimura I., Ohtsuka M., Nakano K., Tajima K., Ezura Y., Christen R.. 1998; Vibrio halioticoli sp. nov., a non-motile alginolytic marine bacterium isolated from the gut of the abalone Haliotis discus hannai. Int J Syst Bacteriol48:573–580 [CrossRef][PubMed]
    [Google Scholar]
  35. Sawabe T., Setoguchi N., Inoue S., Tanaka R., Ootsubo M., Yoshimizu M., Ezura Y.. 2003; Acetic acid production of Vibrio halioticoli from alginate: a possible role for establishment of abalone-V. halioticoli association. Aquaculture219:671–679[CrossRef]
    [Google Scholar]
  36. Stackebrandt E., Goebel B. M.. 2006; Taxonomic parameters revisited: tarnished gold standards. Microbiol Today33:152–155
    [Google Scholar]
  37. Tamaoka J., Katayama-Fujimura Y., Kuraishi H.. 1983; Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Microbiol54:31–36 [CrossRef]
    [Google Scholar]
  38. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  39. Wargacki A. J., Leonard E., Win M. N., Regitsky D. D., Santos C. N., Kim P. B., Cooper S. R., Raisner R. M., Herman A. et al. 2012; An engineered microbial platform for direct biofuel production from brown macroalgae. Science335:308–313 [CrossRef][PubMed]
    [Google Scholar]
  40. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I, Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol37:463–464[CrossRef]
    [Google Scholar]
  41. Yamamoto S., Harayama S.. 1998; Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB, rpoD and 16S rRNA genes. Int J Syst Bacteriol48:813–819 [CrossRef][PubMed]
    [Google Scholar]
  42. Youngdeuk L., Chulhong O., Mahanama D. Z., Hyowon K., Niroshana W. W. D., Ilson W., Do-Hyung K., Jehee L.. 2013; Molecular cloning, overexpression, and enzymatic characterization of glycosyl hydrolase family 16 β-Agarase from marine bacterium Saccharophagus sp. AG21 in Escherichia coli . J Microbiol Biotechnol23:913–922[PubMed][CrossRef]
    [Google Scholar]
  43. Yumoto I., Iwata H., Sawabe T., Ueno K., Ichise N., Matsuyama H., Okuyama H., Kawasaki K.. 1999; Characterization of a facultatively psychrophilic bacterium, vibrio rumoiensis sp. nov., that exhibits high catalase activity. Appl Environ Microbiol65:67–72[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001165
Loading
/content/journal/ijsem/10.1099/ijsem.0.001165
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error