1887

Abstract

Four Gram-stain-negative, non-endospore-forming, non-motile strains were found in soil, South Korea. Based on their 16S rRNA gene sequences, strains UCM-R15 and UCM-R21 are most closely related to Flavobacterium enshiense DK69 (97.4–97.5 %, pairwise similarity) while strains UCM-R36 and UCM-46 are most closely related to Flavobacterium suncheonense GH29-5 (97.5 % and 98.3 %, respectively), with all four strains sharing less than 97 % pairwise similarity to the type strain of any other species of the genus Flavobacterium . None of the four strains can reduce/digest nitrate or urea. The only menaquinone detected was MK-6 and the major fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH, iso-C15 : 1 G and summed feature 9 in all the type strains. Phosphatidylethanolamine was found in three strains as the major polar lipid, phosphatidylserine was found in both strains UCM-R15 and UCM-R36, but not UCM-46, and phosphatidylmonomethylethanolamine only occurred in strain UCM-R15. The genomic DNA G+C content values of strains UCM-R15, UCM-R21, UCM-R36 and UCM-46 were 35.3–39.0  mol%. Taking into account their physiological and biochemical characteristics, we suggest that three of the strains are novel members of the genus Flavobacterium . We propose the names Flavobacterium fulvum sp. nov. for type strain UCM-R15(=KACC 18666=NBRC 111764), and strain UCM-R21 as an additional strain Flavobacterium pedocola sp. nov. for type strain UCM-R36 (=KACC 18668=NBRC 111765), and Flavobacterium humicola sp. nov. for type strain UCM-46 (=KACC 18575=NBRC 111657).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001154
2016-08-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/3108.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001154&mimeType=html&fmt=ahah

References

  1. Ao L. , Zeng X. C. , Nie Y. , Mu Y. , Zhou L. , Luo X. . ( 2014;). Flavobacterium arsenatis sp. nov., a novel arsenic-resistant bacterium from high-arsenic sediment. . Int J Syst Evol Microbiol 64: 3369–3374. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bergey D. H. , Harrison F. C. , Breed R. S. , Hammer B. W. , Huntoon F. M. . ( 1923;). Genus II. Flavobacterium Gen. Nov. . In Bergey’s Manual of Determinative Bacteriology, pp. 97–117. Baltimore:: Williams & Wilkins;.
    [Google Scholar]
  3. Bernardet J. F. , Bowman J. P. . ( 2010;). The genus Flavobacterium . . In Bergey's Manual of Systematic Bacteriology, , 2nd edn.,Vol. 4 pp. 112–155. Edited by Whitman W. B. , Parte A. C. . New York, Dordrecht, Heidelberg, London:: Springer;.
    [Google Scholar]
  4. Dong K. , Chen F. , Du Y. , Wang G. . ( 2013;). Flavobacterium enshiense sp. nov., isolated from soil, and emended descriptions of the genus Flavobacterium and Flavobacterium cauense, Flavobacterium saliperosum and Flavobacterium suncheonense . . Int J Syst Evol Microbiol 63: 886–892. [CrossRef] [PubMed]
    [Google Scholar]
  5. Duchaud E. , Boussaha M. , Loux V. , Bernardet J. F. , Michel C. , Kerouault B. , Mondot S. , Nicolas P. , Bossy R. et al. ( 2007;). Complete genome sequence of the fish pathogen Flavobacterium psychrophilum . . Nat Biotechnol 25: 763–769. [CrossRef] [PubMed]
    [Google Scholar]
  6. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989;). Fluorometric deoxyribonucleic acid deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine Genetic relatedness among bacterial strains. . Int J Syst Evol Microbiol 39: 224–229. [CrossRef]
    [Google Scholar]
  7. Fautz E. , Reichenbach H. . ( 1980;). A simple test for flexirubin-type pigments. . FEMS Microbiol Lett 8: 87–91. [CrossRef]
    [Google Scholar]
  8. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17: 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  9. Felsenstein J. . ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39: 783–791. [CrossRef]
    [Google Scholar]
  10. Fitch W. M. . ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20: 406–416. [CrossRef]
    [Google Scholar]
  11. Frank J. A. , Reich C. I. , Sharma S. , Weisbaum J. S. , Wilson B. A. , Olsen G. J. . ( 2008;). Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. . Appl Environ Microbiol 74: 2461–2470. [CrossRef] [PubMed]
    [Google Scholar]
  12. Glaeser S. P. , Galatis H. , Martin K. , Kämpfer P. . ( 2013;). Flavobacterium cutihirudinis sp. nov., isolated from the skin of the medical leech Hirudo verbana . . Int J Syst Evol Microbiol 63: 2841–2847. [CrossRef] [PubMed]
    [Google Scholar]
  13. Hatayama K. , Kuno T. . ( 2015;). Spirosoma fluviale sp. nov., isolated from river water. . Int J Syst Evol Microbiol 65: 3447–3450. [CrossRef]
    [Google Scholar]
  14. Jacin H. , Mishkin A. R. . ( 1965;). Separation of carbonhydrates on borate-impregnated silica gel G plates. . J Chromatogr 18: 170–173. [CrossRef]
    [Google Scholar]
  15. Jit S. , Dadhwal M. , Prakash O. , Lal R. . ( 2008;). Flavobacterium lindanitolerans sp. nov., isolated from hexachlorocyclohexane-contaminated soil. . Int J Syst Evol Microbiol 58: 1665–1669. [CrossRef] [PubMed]
    [Google Scholar]
  16. Kämpfer P. , Lodders N. , Martin K. , Avendaño-Herrera R. . ( 2012;). Flavobacterium chilense sp. nov. and Flavobacterium araucananum sp. nov., isolated from farmed salmonid fish. . Int J Syst Evol Microbiol 62: 1402–1408. [CrossRef] [PubMed]
    [Google Scholar]
  17. Khianngam S. , Akaracharanya A. , Lee J. S. , Lee K. C. , Kim K. W. , Tanasupawat S. . ( 2014;). Flavobacterium arsenitoxidans sp. nov., an arsenite-oxidizing bacterium from Thai soil. . Antonie Van Leeuwenhoek 106: 1239–1246. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kim B. Y. , Weon H. Y. , Cousin S. , Yoo S. H. , Kwon S. W. , Go S. J. , Stackebrandt E. . ( 2006;). Flavobacterium daejeonense sp. nov. and Flavobacterium suncheonense sp. nov., isolated from greenhouse soils in Korea. . Int J Syst Evol Microbiol 56: 1645–1649. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kim J. H. , Choi B. H. , Jo M. , Kim S. C. , Lee P. C. . ( 2014;). Flavobacterium faecale sp. nov., an agarase-producing species isolated from stools of Antarctic penguins. . Int J Syst Evol Microbiol 64: 2884–2890. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. et al. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  21. Kimura M. . ( 1983;). The Neutral Theory of Molecular Evolution. Cambridge, UK:: Cambridge University Press;.[CrossRef]
    [Google Scholar]
  22. Krieg N. R. , Padgett P. J. . ( 2011;). Phenotypic and physiological characterization methods. . In Methods in Microbiology, , 1st edn.,Vol. 38 pp. 15–60. Edited by Rainey F. , Oren A. . Oxford, UK:: Elsevier Academic Press;.
    [Google Scholar]
  23. Lata P. , Lal D. , Lal R. . ( 2012;). Flavobacterium ummariense sp. nov., isolated from hexachlorocyclohexane-contaminated soil, and emended description of Flavobacterium ceti Vela et al. 2007. . Int J Syst Evol Microbiol 62: 2674–2679. [CrossRef]
    [Google Scholar]
  24. Lee K. , Park S. C. , Yi H. , Chun J. . ( 2013;). Flavobacterium limnosediminis sp. nov., isolated from sediment of a freshwater lake. . Int J Syst Evol Microbiol 63: 4784–4789. [CrossRef] [PubMed]
    [Google Scholar]
  25. Lee S. , Oh J. H. , Weon H. Y. , Ahn T. Y. . ( 2012a;). Flavobacterium cheonhonense sp. nov., isolated from a freshwater reservoir. . J Microbiol 50: 562–566. [CrossRef]
    [Google Scholar]
  26. Lee S. , Weon H.-Y. , Han K. , Ahn T.-Y. . ( 2012b;). Flavobacterium dankookense sp. nov., isolated from a freshwater reservoir, and emended descriptions of Flavobacterium cheonanense, F. chungnamense, F. koreense and F. aquatile . . Int J Syst Evol Microbiol 62: 2378–2382. [CrossRef]
    [Google Scholar]
  27. Li A. , Liu H. , Sun B. , Zhou Y. , Xin Y. . ( 2014;). Flavobacterium lacus sp. nov., isolated from a high-altitude lake, and emended description of Flavobacterium filum . . Int J Syst Evol Microbiol 64: 933–939. [CrossRef] [PubMed]
    [Google Scholar]
  28. Loch T. P. , Faisal M. . ( 2014;). Flavobacterium spartansii sp. nov., a pathogen of fishes, and emended descriptions of Flavobacterium aquidurense and Flavobacterium araucananum . . Int J Syst Evol Microbiol 64: 406–412. [CrossRef] [PubMed]
    [Google Scholar]
  29. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989;). Precise measurement of the g+c content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39: 159–167. [CrossRef]
    [Google Scholar]
  30. Minnikin D. E. , O'Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J. H. . ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2: 233–241. [CrossRef]
    [Google Scholar]
  31. Nedashkovskaya O. I. , Balabanova L. A. , Zhukova N. V. , Kim S. J. , Bakunina I. Y. , Rhee S. K. . ( 2014;). Flavobacterium ahnfeltiae sp. nov., a new marine polysaccharide-degrading bacterium isolated from a Pacific red alga. . Arch Microbiol 196: 745–752. [CrossRef] [PubMed]
    [Google Scholar]
  32. Ngo H. T. , Kook M. , Yi T. H. . ( 2015;). Flavobacterium daemonensis sp. nov., isolated from Daemo Mountain soil. . Int J Syst Evol Microbiol 65: 983–989. [CrossRef] [PubMed]
    [Google Scholar]
  33. Pitcher D. G. , Saunders N. A. , Owen R. J. . ( 1989;). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. . Lett Appl Microbiol 8: 151–156. [CrossRef]
    [Google Scholar]
  34. Qu J. H. , Yuan H. L. , Li H. F. , Deng C. P. . ( 2009;). Flavobacterium cauense sp. nov., isolated from sediment of a eutrophic lake. . Int J Syst Evol Microbiol 59: 2666–2669. [CrossRef] [PubMed]
    [Google Scholar]
  35. Rohde M. . ( 2011;). Microscopy. . In Methods in Microbiology, , 1st edn.,Vol. 38 pp. 61–100. Edited by Rainey F. , Oren A. . London:: Elsevier Academic Press;.
    [Google Scholar]
  36. Ross H. N. M. , Grant W. D. . ( 1985;). Lipids in archaebacterial taxonomy. . In Chemical Methods in Bacterial Systematics, pp. 289–299. Edited by Goodfellow M. , Minnikin D. E. . New York:: Academic Press;.
    [Google Scholar]
  37. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4: 406–425.
    [Google Scholar]
  38. Sasser M. . ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  39. Starliper C. E. . ( 2011;). Bacterial coldwater disease of fishes caused by Flavobacterium psychrophilum . . J Adv Res 2: 97–108. [CrossRef]
    [Google Scholar]
  40. Tamaki H. , Hanada S. , Kamagata Y. , Nakamura K. , Nomura N. , Nakano K. , Matsumura M. . ( 2003;). Flavobacterium limicola sp. nov., a psychrophilic, organic-polymer-degrading bacterium isolated from freshwater sediments. . Int J Syst Evol Microbiol 53: 519–526. [CrossRef] [PubMed]
    [Google Scholar]
  41. Tamura K. , Stecher G. , Peterson D. , Filipski A. , Kumar S. . ( 2013;). MEGA6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30: 2725–2729. [CrossRef] [PubMed]
    [Google Scholar]
  42. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997;). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25: 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  43. Tindall B. J. , Sikorki J. , Smibert R. A. , Kried N. R. , Snyder L. R. . ( 2007;). Phenotypic characterization and the principles of comparative systematics. . In Methods for General and Molecular Microbiology, , 3rd edn., pp. 330–394. Edited by Reddy C. A. , Beveridge T. J. , Breznak J. A. , Marzluf G. A. , Schmidt T. M. . Washington, DC:: ASM press;.
    [Google Scholar]
  44. Tschech A. , Pfennig N. . ( 1984;). Growth yield increase linked to caffeate reduction in Acetobacterium woodii . . Arch Microbiol 137: 163–167. [CrossRef]
    [Google Scholar]
  45. Van Trappen S. , Vandecandelaere I. , Mergaert J. , Swings J. . ( 2005;). Flavobacterium fryxellicola sp. nov. and Flavobacterium psychrolimnae sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes. . Int J Syst Evol Microbiol 55: 769–772. [CrossRef]
    [Google Scholar]
  46. Wakabayashi H. , Huh G. J. , Kimura N. . ( 1989;). Flavobacterium branchiophila sp. nov., a causative agent of bacterial gill disease of freshwater fishes. . Int J Syst Bacteriol 39: 213–216.[CrossRef]
    [Google Scholar]
  47. Wang Z. W. , Liu Y. H. , Dai X. , Wang B. J. , Jiang C. Y. , Liu S. J. . ( 2006;). Flavobacterium saliperosum sp. nov., isolated from freshwater lake sediment. . Int J Syst Evol Microbiol 56: 439–442. [CrossRef]
    [Google Scholar]
  48. Weeks O. B. , Andrewes A. G. , Brown B. O. , Weedon B. C. . ( 1969;). Occurrence of C40 and C45 carotenoids in the C50 carotenoid system of Flavobacterium dehydrogenans . . Nature 224: 879–882. [CrossRef] [PubMed]
    [Google Scholar]
  49. Wheater D. M. . ( 1955;). The characteristics of Lactobacillus acidophilus and Lactobacillus bulgaricus . . J Gen Microbiol 12: 123–132. [CrossRef]
    [Google Scholar]
  50. Widdel F. , Kohring G. W. , Mayer F. . ( 1983;). Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. . Arch Microbiol 134: 286–294. [CrossRef]
    [Google Scholar]
  51. Yi H. , Oh H. M. , Lee J. H. , Kim S. J. , Chun J. . ( 2005;). Flavobacterium antarcticum sp. nov., a novel psychrotolerant bacterium isolated from the Antarctic. . Int J Syst Evol Microbiol 55: 637–641. [CrossRef]
    [Google Scholar]
  52. Yoon H. S. , Aslam Z. , Song G. C. , Kim S. W. , Jeon C. O. , Chon T. S. , Chung Y. R. . ( 2009;). Flavobacterium sasangense sp. nov., isolated from a wastewater stream polluted with heavy metals. . Int J Syst Evol Microbiol 59: 1162–1166. [CrossRef]
    [Google Scholar]
  53. Zhang D. C. , Wang H. X. , Liu H. C. , Dong X. Z. , Zhou P. J. . ( 2006;). Flavobacterium glaciei sp. nov., a novel psychrophilic bacterium isolated from the China No.1 glacier. . Int J Syst Evol Microbiol 56: 2921–2925. [CrossRef] [PubMed]
    [Google Scholar]
  54. Zhang J. , Jiang R. B. , Zhang X. X. , Hang B. J. , He J. , Li S. P. . ( 2010;). Flavobacterium haoranii sp. nov., a cypermethrin-degrading bacterium isolated from a wastewater treatment system. . Int J Syst Evol Microbiol 60: 2882–2886. [CrossRef] [PubMed]
    [Google Scholar]
  55. Zhu L. , Liu Q. , Liu H. , Zhang J. , Dong X. , Zhou Y. , Xin Y. . ( 2009;). Flavobacterium noncentrifugens sp. nov., a psychrotolerant bacterium isolated from glacier meltwater. . Int J Syst Evol Microbiol 63: 2032–2037. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001154
Loading
/content/journal/ijsem/10.1099/ijsem.0.001154
Loading

Data & Media loading...

Supplements

Supplementary File 1



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error