1887

Abstract

Two novel strains of Gram-stain-negative, rod-shaped, obligately anaerobic, non-spore-forming, non-motile bacteria were isolated from the faeces of healthy human subjects. The strains, designated as 585-1 and 668, were characterized by mesophilic fermentative metabolism, production of d-lactic acid, succinic acid and acetic acid as end products of d-glucose fermentation, prevalence of C18 : 1 ω9, C18 : 1 ω9 aldehyde, C16 : 0 and C16 : 1 ω7c fatty acids, presence of glycine, glutamic acid, lysine, alanine and aspartic acid in the petidoglycan peptide moiety and lack of respiratory quinones. Whole genome sequencing revealed the DNA G+C content was 56.4–56.6 mol%. The complete 16S rRNA gene sequences of the two strains shared 91.7/91.6 % similarity with Anaerofilum pentosovorans Fae, 91.3/91.2 % with Gemmiger formicilis ATCC 27749 and 88.9/88.8 % with Faecalibacterium prausnitzii ATCC 27768. On the basis of chemotaxonomic and genomic properties it was concluded that the strains represent a novel species in a new genus within the family Ruminococcaceae , for which the name Ruthenibacterium lactatiformans gen. nov., sp. nov. is proposed. The type strain of Ruthenibacterium lactatiformans is 585-1 (=DSM 100348=VKM B-2901).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001143
2016-08-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/3041.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001143&mimeType=html&fmt=ahah

References

  1. Angiuoli S. V. , Gussman A. , Klimke W. , Cochrane G. , Field D. , Garrity G. , Kodira C. D. , Kyrpides N. , Madupu R. et al. ( 2008;). Toward an online repository of standard operating procedures (SOPs) for (meta)genomic annotation. . OMICS 12: 137–141. [CrossRef] [PubMed]
    [Google Scholar]
  2. Arumugam M. , Raes J. , Pelletier E. , Le Paslier D. , Yamada T. , Mende D. R. , Fernandes G. R. , Tap J. , Bruls T. et al. ( 2011;). Enterotypes of the human gut microbiome. . Nature 473: 174–180. [CrossRef] [PubMed]
    [Google Scholar]
  3. Cato E. P. , Salmon C. W. , Moore W. E. C. . ( 1974;). Fusobacterium prausnitzii moore and holdeman: emended description and designation of neotype strain. . Int J Syst Bacteriol 24: 225–229.[CrossRef]
    [Google Scholar]
  4. Collins M. D. . ( 1985;). Analysis of isoprenoid quinones. . In Methods in Microbiology,vol. 18 pp. 329–366. Edited by Gottschalk G. . New York:: Academic Press;.
    [Google Scholar]
  5. Collins M. D. , Lawson P. A. , Willems A. , Cordoba J. J. , Fernandez-Garayzabal J. , Garcia P. , Cai J. , Hippe H. , Farrow J. A. . ( 1994;). The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. . Int J Syst Bacteriol 44: 812–826. [CrossRef] [PubMed]
    [Google Scholar]
  6. De Vos P. , Garrity G. M. , Jones D. , Krieg N. R. , Ludwig W. , Rainey F. A. , Schleifer K. H. , Whitman W. B. . ( 2009;). Bergey’s Manual of Systematic Bacteriology, , 2nd edn.,vol. 3. The Firmicutes. New York:: NY: Springer-Verlag;.
    [Google Scholar]
  7. Duda V. I. , Suzina N. E. , Esikova T. Z. , Akimov V. N. , Oleinikov R. R. , Polivtseva V. N. , Abashina T. N. , Shorokhova A. P. , Boronin A. M. . ( 2009;). A cytological characterization of the parasitic action of ultramicrobacteria NF1 and NF3 of the genus Kaistia on chemoorganotrophic and phototrophic bacteria. . FEMS Microbiol Ecol 69: 180–193. [CrossRef] [PubMed]
    [Google Scholar]
  8. Duncan S. H. , Hold G. L. , Harmsen H. J. , Stewart C. S. , Flint H. J. . ( 2002;). Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. . Int J Syst Evol Microbiol 52: 2141–2146. [CrossRef] [PubMed]
    [Google Scholar]
  9. Edgar R. C. . ( 2004;). MUSCLE: multiple sequence alignment with high accuracy and high throughput. . Nucleic Acids Res 32: 1792–1797. [CrossRef] [PubMed]
    [Google Scholar]
  10. Felsenstein J. . ( 1985;). Confidence ;limits on phylogenies: an approach using the bootstrap. . Evolution 39: 783–791. [CrossRef]
    [Google Scholar]
  11. Gossling J. , Moore W. E. C. . ( 1975;). Gemmiger formicilis, n.gen., n.sp., an anaerobic budding bacterium from intestines. . Int J Syst Bacteriol 25: 202–207. [CrossRef]
    [Google Scholar]
  12. Grech-Mora I. , Fardeau M.-L. , Patel B. K. C. , Ollivier B. , Rimbault A. , Prensier G. , Garcia J.-L. , Garnier-Sillam E. . ( 1996;). Isolation and characterization of Sporobacter termitidis gen. nov., sp. nov., from the digestive tract of the wood-feeding termite Nasutitermes lujae. . Int J Syst Bacteriol 46: 512–518. [CrossRef]
    [Google Scholar]
  13. Holdeman L. V. , Moore W. E. C. . ( 1973;). Anaerobe Laboratory Manual, , 2nd edn.. Blacksburg, VA:: Virginia Polytechnic Institute and State University;.
    [Google Scholar]
  14. Holmstrøm K. , Collins M. D. , Moller T. , Falsen E. , Lawson. P. A. . ( 2004;). Subdoligranulum variabile gen. nov., sp. nov from human feces. . Anaerobe 10: 197–203.[CrossRef]
    [Google Scholar]
  15. Jantzen E. , Hofstad T. . ( 1981;). Fatty acids of Fusobacterium species: taxonomic implications. . J Gen Microbiol 123: 163–171. [CrossRef]
    [Google Scholar]
  16. Jones D. T. , Taylor W. R. , Thornton J. M. . ( 1992;). The rapid generation of mutation data matrices from protein sequences. . Comput Appl Biosci 8: 275–282. [CrossRef] [PubMed]
    [Google Scholar]
  17. Khan M. T. , Duncan S. H. , Stams A. J. , Van Dijl J. M. , Flint H. J. , Harmsen H. J. . ( 2012;). The gut anaerobe Faecalibacterium prausnitzii uses an extracellular electron shuttle to grow at oxic-anoxic interphases. . ISME J 6: 1578–1585. [CrossRef] [PubMed]
    [Google Scholar]
  18. Lawson P. A. , Rainey F. A. . ( 2016;). Proposal to restrict the genus Clostridium (Prazmowski) to Clostridium butyricum and related species. . Int J Syst Evol Microbiol 66: 1009–1016.[CrossRef]
    [Google Scholar]
  19. Ley R. E. , Turnbaugh P. J. , Klein S. , Gordon J. I. . ( 2006;). Microbial ecology: human gut microbes associated with obesity. . Nature 444: 1022–1023. [CrossRef] [PubMed]
    [Google Scholar]
  20. Li E. , Hamm C. M. , Gulati A. S. , Sartor R. B. , Chen H. , Wu X. , Zhang T. , Rohlf F. J. , Zhu W. et al. ( 2012;). Inflammatory Bowel diseases phenotype, C. difficile and NOD2 genotype are associated with shifts in human Ileum associated microbial composition. . PLoS One 7: e26284. [CrossRef]
    [Google Scholar]
  21. Li L. , Stoeckert C. J. , Roos D. S. . ( 2003;). OrthoMCL: identification of ortholog groups for eukaryotic genomes. . Genome Res 13: 2178–2189. [CrossRef] [PubMed]
    [Google Scholar]
  22. Li M. , Wang B. , Zhang M. , Rantalainen M. , Wang S. , Zhou H. , Zhang Y. , Shen J. , Pang X. et al. ( 2008;). Symbiotic gut microbes modulate human metabolic phenotypes. . Proc Natl Acad Sci U S A 105: 2117–2122. [CrossRef] [PubMed]
    [Google Scholar]
  23. Louis P. , Flint H. J. . ( 2009;). Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. . FEMS Microbiol Lett 294: 1–8. [CrossRef] [PubMed]
    [Google Scholar]
  24. Minato H. , Ishibashi S. , Hamaoka T. . ( 1988;). Cellular fatty acid and sugar composition of representative strains of rumen bacteria. . J Gen Appl Microbiol 34: 303–319.[CrossRef]
    [Google Scholar]
  25. Moriya Y. , Itoh M. , Okuda S. , Yoshizawa A. C. , Kanehisa M. . ( 2007;). KAAS: an automatic genome annotation and pathway reconstruction server. . Nucleic Acids Res 35: 182–185. [CrossRef] [PubMed]
    [Google Scholar]
  26. Quévrain E. , Maubert M. A. , Michon C. , Chain F. , Marquant R. , Tailhades J. , Miquel S. , Carlier L. et al. ( 2016;). Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn's disease. . Gut 65: 415–425. [CrossRef] [PubMed]
    [Google Scholar]
  27. Rainey F. A. . ( 2009;). Ruminococcaceae fam. nov. . In The Bergey’s Manual of Systematic Bacteriology, , 2nd edn. vol. 3, Edited by Vos P. , Garrity G. , Jones D. , Krieg N. R. , Ludwig W. , Rainey F. A. , Schleifer K.-H. , Whitman W. . New York:: Springer-Verlag;.
    [Google Scholar]
  28. Richter M. , Rosselló-Móra R. , Oliver Glöckner F. , Peplies J. . ( 2016;). JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. . Bioinformatics 32: 929–931. [CrossRef] [PubMed]
    [Google Scholar]
  29. Roper J. M. , Raux E. , Brindley A. A. , Schubert H. L. , Gharbia S. E. , Shah H. N. , Warren M. J. . ( 2000;). The enigma of cobalamin (Vitamin B12) biosynthesis in Porphyromonas gingivalis. Identification and characterization of a functional corrin pathway. . J Biol Chem 275: 40316–40323. [CrossRef] [PubMed]
    [Google Scholar]
  30. Rossi O. , Khan M. T. , Schwarzer M. , Hudcovic T. , Srutkova D. , Duncan S. H. , Stolte E. H. , Kozakova H. , Flint H. J. et al. ( 2015;). Faecalibacterium prausnitzii strain HTF-F and Its extracellular polymeric matrix attenuate clinical parameters in DSS-induced colitis. . PLoS One 10: e0123013. [CrossRef] [PubMed]
    [Google Scholar]
  31. Salanitro J. P. , Muirhead P. A. , Goodman J. R. . ( 1976;). Morphological and physiological characteristics of Gemmiger formicilis isolated from chicken ceca. . Appl Environ Microbiol 32: 623–632.[PubMed]
    [Google Scholar]
  32. Schleifer K. H. , Kandler O. . ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36: 407–477.[PubMed]
    [Google Scholar]
  33. Schumann P. . ( 2011;). Peptidoglycan structure. . In Taxonomy of Prokaryotes, Methods in Microbiology,vol. 38 pp. 101–129. Edited by Rainey F. , Oren A. . London:: Academic Press;.[CrossRef]
    [Google Scholar]
  34. Shkoporov A. N. , Chaplin A. V. , Khokhlova E. V. , Shcherbakova V. A. , Motuzova O. V. , Bozhenko V. K. , Kafarskaia L. I. , Efimov B. A. . ( 2015;). Alistipes inops sp. nov. and Coprobacter secundus sp. nov., isolated from human faeces. . Int J Syst Evol Microbiol 65: 4580–4588. [CrossRef] [PubMed]
    [Google Scholar]
  35. Sijpesteijn A. K. . ( 1948;). Cellulose-Decomposing Bacteria From the Rumen of Cattle. Leiden University;, Leiden: Eduard Ijdo N.V:.
    [Google Scholar]
  36. Sokol H. , Seksik P. , Furet J. P. , Firmesse O. , Nion-Larmurier I. , Beaugerie L. , Cosnes J. , Corthier G. , Marteau P. et al. ( 2009;). Low counts of Faecalibacterium prausnitzii in colitis microbiota. . Inflamm Bowel Dis 15: 1183–1189. [CrossRef] [PubMed]
    [Google Scholar]
  37. Stamatakis A. . ( 2014;). RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. . Bioinformatics 30: 1312–1313. [CrossRef] [PubMed]
    [Google Scholar]
  38. Tamura K. , Nei M. . ( 1993;). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. . Mol Biol Evol 10: 512–526.[PubMed]
    [Google Scholar]
  39. Tamura K. , Stecher G. , Peterson D. , Filipski A. , Kumar S. . ( 2013;). MEGA6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30: 2725–2729. [CrossRef] [PubMed]
    [Google Scholar]
  40. Van Gelder A. H. , Sousa D. Z. , Rijpstra W. I. , Damsté J. S. , Stams A. J. , Sánchez-Andrea I. . ( 2014;). Ercella succinigenes gen. nov., sp. nov., an anaerobic succinate-producing bacterium. . Int J Syst Evol Microbiol 64: 2449–2454. [CrossRef] [PubMed]
    [Google Scholar]
  41. Wozny M. A. , Bryant M. P. , Holdeman L. V. , Moore W. E. . ( 1977;). Urease assay and urease-producing species of anaerobes in the bovine rumen and human feces. . Appl Environ Microbiol 33: 1097–1104.[PubMed]
    [Google Scholar]
  42. Yanagita K. , Manome A. , Meng X. Y. , Hanada S. , Kanagawa T. , Tsuchida T. , Mackie R. I. , Kamagata Y. . ( 2003;). Flow cytometric sorting, phylogenetic analysis and in situ detection of Oscillospira guillermondii, a large, morphologically conspicuous but uncultured ruminal bacterium. . Int J Syst Evol Microbiol 53: 1609–1614. [CrossRef] [PubMed]
    [Google Scholar]
  43. Yutin N. , Galperin M. Y. . ( 2013;). A genomic update on clostridial phylogeny: gram-negative spore formers and other misplaced clostridia. . Environ Microbiol 15: 2631–2641. [CrossRef] [PubMed]
    [Google Scholar]
  44. Zellner G. , Stackebrandt E. , Nagel D. , Messner P. , Weiss N. , Winter J. . ( 1996;). Anaerofilum pentosovorans gen. nov., sp. nov., and Anaerofilum agile sp. nov., two new, strictly anaerobic, mesophilic, acidogenic bacteria from anaerobic bioreactors. . Int J Syst Bacteriol 46: 871–875. [CrossRef] [PubMed]
    [Google Scholar]
  45. Zhilina T. N. , Zavarzina D. G. , Panteleeva A. N. , Osipov G. A. , Kostrikina N. A. , Tourova T. P. , Zavarzin G. A. . ( 2012;). Fuchsiella alkaliacetigena gen. nov., sp. nov., an alkaliphilic, lithoautotrophic homoacetogen from a soda lake. . Int J Syst Evol Microbiol 62: 1666–1673. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001143
Loading
/content/journal/ijsem/10.1099/ijsem.0.001143
Loading

Data & Media loading...

Supplementary File 1



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error