1887

Abstract

A novel endospore-forming bacterium designated strain GSsed3 was isolated from deposits clogging aboveground filters from the geothermal power platform of Groß Schönebeck in northern Germany. The novel isolate was Gram-staining-positive, facultatively anaerobic, catalase-positive and oxidase-positive. Optimum growth occurred at 60 °C, 0.5 % (w/v) NaCl and pH 7–8. Analysis of the 16S rRNA gene sequence similarity indicated that strain GSsed3 belonged to the genus Anoxybacillus , and showed 99.8 % sequence similarity to Anoxybacillus rupiensis R270, 98.2 % similarity to Anoxybacillus tepidamans GS5-97, 97.9 % similarity to Anoxybacillus voinovskiensis TH13, 97.7 % similarity to Anoxybacillus caldiproteolyticus DSM 15730 and 97.6 % similarity to Anoxybacillus amylolyticus MR3C. DNA–DNA hybridization (DDH) indicated only 16 % relatedness to Anoxybacillus rupiensis DSM 17127. Furthermore, DDH estimation based on genomes analysis indicated only 19.9 % overall nucleotide similarity to Anoxybacillus amylolyticus DSM 15939. The major respiratory menaquinone was MK-8. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, one unknown phosphoglycolipid and one unknown phospholipid. The predominant cellular fatty acids were iso-C15 : 0, iso-C17 : 0, C16 : 0, iso-C16 : 0 and anteiso-C17 : 0. The peptidoglycan type was A1γ meso-Dpm-direct. The genomic DNA G+C content of the strain was 46.9 mol%. The phenotypic, genotypic and chemotaxonomic characterization indicated that strain GSsed3 differs from related species of the genus. Therefore, strain GSsed3 is considered to be a representative of a novel species of the genus Anoxybacillus , for which the name Anoxybacillus geothermalis sp. nov. is proposed. The type strain of Anoxybacillus geothermalis is GSsed3 (=CCOS808 =ATCC BAA2555).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001125
2016-08-01
2019-09-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/2944.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001125&mimeType=html&fmt=ahah

References

  1. Adkins J. P. , Cornell L. A. , Tanner R. S. . ( 1992;). Microbial composition of carbonate petroleum reservoir fluids. . Geomicrobiology Journal 10: 87–97. [CrossRef]
    [Google Scholar]
  2. Anisimova M. , Gascuel O. . ( 2006;). Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. . Syst Biol 55: 539–552. [CrossRef] [PubMed]
    [Google Scholar]
  3. Atanassova M. , Derekova A. , Mandeva R. , Sjøholm C. , Kambourova M. . ( 2008;). Anoxybacillus bogrovensis sp. nov., a novel thermophilic bacterium isolated from a hot spring in Dolni Bogrov, Bulgaria. . Int J Syst Evol Microbiol 58: 2359–2362. [CrossRef] [PubMed]
    [Google Scholar]
  4. Belduz A. O. , Dulger S. , Demirbag Z. . ( 2003;). Anoxybacillus gonensis sp. nov., a moderately thermophilic, xylose-utilizing, endospore-forming bacterium. . Int J Syst Evol Microbiol 53: 1315–1320. [CrossRef] [PubMed]
    [Google Scholar]
  5. Brewer J. H. . ( 1940;). Clear liquid mediums for the “AEROBIC" cultivation of anaerobes. . J Am Med Assoc 115: 598–600. [CrossRef]
    [Google Scholar]
  6. Cashion P. , Holder-Franklin M. A. , McCully J. , Franklin M. . ( 1977;). A rapid method for the base ratio determination of bacterial DNA. . Anal Biochem 81: 461–466. [CrossRef] [PubMed]
    [Google Scholar]
  7. Castresana J. . ( 2000;). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. . Mol Biol Evol 17: 540–552. [CrossRef] [PubMed]
    [Google Scholar]
  8. Cihan A. C. , Cokmus C. , Koc M. , Ozcan B. . ( 2014;). Anoxybacillus calidus sp. nov., a thermophilic bacterium isolated from soil near a thermal power plant. . Int J Syst Evol Microbiol 64: 211–219. [CrossRef] [PubMed]
    [Google Scholar]
  9. Cihan A. C. , Ozcan B. , Cokmus C. . ( 2011;). Anoxybacillus salavatliensis sp. nov., an α-glucosidase producing, thermophilic bacterium isolated from Salavatli, Turkey. . J Basic Microbiol 51: 136–146. [CrossRef] [PubMed]
    [Google Scholar]
  10. Coorevits A. , Dinsdale A. E. , Halket G. , Lebbe L. , De Vos P. , Van Landschoot A. , Logan N. A. . ( 2012;). Taxonomic revision of the genus Geobacillus: emendation of Geobacillus, G. stearothermophilus, G. jurassicus, G. toebii, G. thermodenitrificans and G. thermoglucosidans (nom. corrig., formerly 'thermoglucosidasius'); transfer of Bacillus thermantarcticus to the genus as G. thermantarcticus comb. nov.; proposal of Caldibacillus debilis gen. nov., comb. nov.; transfer of G. tepidamans to Anoxybacillus as A. tepidamans comb. nov.; and proposal of Anoxybacillus caldiproteolyticus sp. nov. . Int J Syst Evol Microbiol 62: 1470–1485. [CrossRef] [PubMed]
    [Google Scholar]
  11. Dai J. , Liu Y. , Lei Y. , Gao Y. , Han F. , Xiao Y. , Peng H. . ( 2011;). A new subspecies of Anoxybacillus flavithermus ssp. yunnanensis ssp. nov. with very high ethanol tolerance. . FEMS Microbiol Lett 320: 72–78. [CrossRef] [PubMed]
    [Google Scholar]
  12. De Clerck E. , Rodríguez-Díaz M. , Vanhoutte T. , Heyrman J. , Logan N. A. , De Vos P. . ( 2004;). Anoxybacillus contaminans sp. nov. and Bacillus gelatini sp. nov., isolated from contaminated gelatin batches. . Int J Syst Evol Microbiol 54: 941–946. [CrossRef] [PubMed]
    [Google Scholar]
  13. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12: 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  14. Dereeper A. , Guignon V. , Blanc G. , Audic S. , Buffet S. , Chevenet F. , Dufayard J. F. , Guindon S. , Lefort V. et al. ( 2008;). Phylogeny.fr: robust phylogenetic analysis for the non-specialist. . Nucleic Acids Res 36: W465–W469. [CrossRef] [PubMed]
    [Google Scholar]
  15. Derekova A. , Sjøholm C. , Mandeva R. , Kambourova M. . ( 2007;). Anoxybacillus rupiensis sp. Nov., a novel thermophilic bacterium isolated from Rupi basin (Bulgaria). . Extremophiles 11: 577–583. [CrossRef] [PubMed]
    [Google Scholar]
  16. Dulger S. , Demirbag Z. , Belduz A. O. . ( 2004;). Anoxybacillus ayderensis sp. nov. and Anoxybacillus kestanbolensis sp. nov. . Int J Syst Evol Microbiol 54: 1499–1503. [CrossRef] [PubMed]
    [Google Scholar]
  17. Elias I. , Lagergren J. . ( 2007;). Fast computation of distance estimators. . BMC Bioinformatics 8: 89. [CrossRef] [PubMed]
    [Google Scholar]
  18. Feldbusch E. , Regenspurg S. , Banks J. , Milsch H. , Saadat A. . ( 2013;). Alteration of fluid properties during the initial operation of a geothermal plant: results from in situ measurements in Groß Schönebeck. . Environ Earth Sci 70: 3447–3458. [CrossRef]
    [Google Scholar]
  19. Filippidou S. , Jaussi M. , Junier T. , Wunderlin T. , Roussel-Delif L. , Jeanneret N. , Vieth-Hillebrand A. , Vetter A. , Regenspurg S. et al. ( 2015;). Genome sequence of Anoxybacillus geothermalis strain GSsed3, a novel thermophilic endospore-forming species. . Genome Announc 3: 3. [CrossRef]
    [Google Scholar]
  20. Gascuel O. . ( 1997;). BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. . Mol Biol Evol 14: 685–695. [CrossRef] [PubMed]
    [Google Scholar]
  21. Gerhardt P. . ( 1994;). Methods for General and Molecular Bacteriology. Washington, D.C:: American Society for Microbiology;.
    [Google Scholar]
  22. Goboloff P. , Farris S. , Nixon K. . ( 2000;). TNT (Tree Analysis Using New Technology), ver. 1.1 2000, Publ Authors Tucumán Argent;.
    [Google Scholar]
  23. Guindon S. , Dufayard J. F. , Lefort V. , Anisimova M. , Hordijk W. , Gascuel O. . ( 2010;). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. . Syst Biol 59: 307–321. [CrossRef] [PubMed]
    [Google Scholar]
  24. Gul-Guven R. , Guven K. , Poli A. , Nicolaus B. . ( 2008;). Anoxybacillus kamchatkensis subsp. asaccharedens subsp. nov., a thermophilic bacterium isolated from a hot spring in Batman. . J Gen Appl Microbiol 54: 327–334. [CrossRef] [PubMed]
    [Google Scholar]
  25. Harrigan F. W. , McCance M. E. . ( 1987;). Laboratory Methods in Microbiology, London:: Academic Press;.
    [Google Scholar]
  26. Huelsenbeck J. P. , Ronquist F. . ( 2001;). MRBAYES: Bayesian inference of phylogenetic trees. . Bioinforma Oxf Engl 17: 754–755. [CrossRef]
    [Google Scholar]
  27. Huss V. A. , Festl H. , Schleifer K. H. . ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from denaturation rates. . Syst Appl Microbiol 4: 184–192. [CrossRef] [PubMed]
    [Google Scholar]
  28. Inan K. , Belduz A. O. , Canakci S. . ( 2013;). Anoxybacillus kaynarcensis sp. nov., a moderately thermophilic, xylanase producing bacterium. . J Basic Microbiol 53: 410–419. [CrossRef] [PubMed]
    [Google Scholar]
  29. Joffin J. N. , Leyral G. . ( 2001;). Microbiologie Technique: Tome 1, Dictionnaire Des Techniques, , 3rd end., France:: Centre régional de documentation pédagogique d’Aquitaine;.
    [Google Scholar]
  30. Kevbrin V. V. , Zengler K. , Lysenko A. M. , Wiegel J. . ( 2005;). Anoxybacillus kamchatkensis sp. nov., a novel thermophilic facultative aerobic bacterium with a broad pH optimum from the Geyser valley, Kamchatka. . Extremophiles 9: 391–398. [CrossRef] [PubMed]
    [Google Scholar]
  31. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. et al. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  32. Kohlmeier S. , Smits T. H. , Ford R. M. , Keel C. , Harms H. , Wick L. Y. . ( 2005;). Taking the fungal highway: mobilization of pollutant-degrading bacteria by fungi. . Environ Sci Technol 39: 4640–4646. [CrossRef] [PubMed]
    [Google Scholar]
  33. Logan N. A. , Berge O. , Bishop A. H. , Busse H. J. , De Vos P. , Fritze D. , Heyndrickx M. , Kämpfer P. , Rabinovitch L. et al. ( 2009;). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. . Int J Syst Evol Microbiol 59: 2114–2121. [CrossRef] [PubMed]
    [Google Scholar]
  34. Meier-Kolthoff J. P. , Auch A. F. , Klenk H. P. , Göker M. . ( 2013;). Genome sequence-based species delimitation with confidence intervals and improved distance functions. . BMC Bioinformatics 14: 60. [CrossRef] [PubMed]
    [Google Scholar]
  35. Muyzer G. , Teske A. , Wirsen C. O. , Jannasch H. W. . ( 1995;). Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. . Arch Microbiol 164: 165–172. [CrossRef] [PubMed]
    [Google Scholar]
  36. Namsaraev Z. B. , Babasanova O. B. , Dunaevsky Y. E. , Akimov V. N. , Barkhutova D. D. , Gorlenko V. M. , Namsaraev B. B. . ( 2010;). Anoxybacillus mongoliensis sp. nov., a novel thermophilic proteinase producing bacterium isolated from alkaline hot spring, central Mongolia. . Mikrobiologiia 79: 516–523. [CrossRef] [PubMed]
    [Google Scholar]
  37. Nazina T. N. , Tourova T. P. , Poltaraus A. B. , Novikova E. V. , Grigoryan A. A. , Ivanova A. E. , Lysenko A. M. , Petrunyaka V. V. , Osipov G. A. et al. ( 2001;). Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G.kaustophilus, G. thermoglucosidasius and G. thermodenitrificans . . Int J Syst Evol Microbiol 51: 433–446. [CrossRef] [PubMed]
    [Google Scholar]
  38. Needleman S. B. , Wunsch C. D. . ( 1970;). A general method applicable to the search for similarities in the amino acid sequence of two proteins. . J Mol Biol 48: 443–453. [CrossRef] [PubMed]
    [Google Scholar]
  39. Ovreås L. , Forney L. , Daae F. L. , Torsvik V. . ( 1997;). Distribution of bacterioplankton in meromictic Lake Saelenvannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S rRNA. . Appl Environ Microbiol 63: 3367–3373.[PubMed]
    [Google Scholar]
  40. Pikuta E. , Lysenko A. , Chuvilskaya N. , Mendrock U. , Hippe H. , Suzina N. , Nikitin D. , Osipov G. , Laurinavichius K. . ( 2000;). Anoxybacillus pushchinensis gen. nov., sp. nov., a novel anaerobic, alkaliphilic, moderately thermophilic bacterium from manure, and description of Anoxybacillus flavitherms comb. nov. . Int J Syst Evol Microbiol 50: 2109–2117. [CrossRef] [PubMed]
    [Google Scholar]
  41. Poli A. , Esposito E. , Lama L. , Orlando P. , Nicolaus G. , de Appolonia F. , Gambacorta A. , Nicolaus B. . ( 2006;). Anoxybacillus amylolyticus sp. nov., a thermophilic amylase producing bacterium isolated from Mount Rittmann (Antarctica). . Syst Appl Microbiol 29: 300–307. [CrossRef] [PubMed]
    [Google Scholar]
  42. Poli A. , Romano I. , Cordella P. , Orlando P. , Nicolaus B. , Ceschi Berrini C. . ( 2009;). Anoxybacillus thermarum sp. nov., a novel thermophilic bacterium isolated from thermal mud in Euganean hot springs, Abano Terme, Italy. . Extrem Life Extreme Cond 13: 867–874. [CrossRef]
    [Google Scholar]
  43. Rashid M. H. , Kornberg A. . ( 2000;). Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa . . Proc Natl Acad Sci USA 97: 4885–4890. [CrossRef] [PubMed]
    [Google Scholar]
  44. Regenspurg S. , Feldbusch E. , Byrne J. , Deon F. , Driba D. L. , Henninges J. , Kappler A. , Naumann R. , Reinsch T. , Schubert C. . ( 2015;). Mineral precipitation during production of geothermal fluid from a Permian Rotliegend reservoir. . Geothermics 54: 122–135. [CrossRef]
    [Google Scholar]
  45. Rodriguez-R L. M. , Konstantinidis K. T. . ( 2014;). Bypassing Cultivation To Identify Bacterial Species. . Microbe Magazine 9: 111–118. [CrossRef]
    [Google Scholar]
  46. Ronquist F. , Huelsenbeck J. P. . ( 2003;). MrBayes 3: Bayesian phylogenetic inference under mixed models. . Bioinforma Oxf Engl 19: 1572–1574. [CrossRef]
    [Google Scholar]
  47. Schäffer C. , Franck W. L. , Scheberl A. , Kosma P. , McDermott T. R. , Messner P. . ( 2004;). Classification of isolates from locations in Austria and yellowstone national park as Geobacillus tepidamans sp. nov. . Int J Syst Evol Microbiol 54: 2361–2368. [CrossRef] [PubMed]
    [Google Scholar]
  48. Tanner R. . ( 1989;). Monitoring sulfate-reducing bacteria – comparison of enumeration media. . J Microbiol Methods 10: 83–90. [CrossRef]
    [Google Scholar]
  49. Vandamme P. , Pot B. , Gillis M. , De Vos P. , Kersters K. , Swings J. . ( 1996;). Polyphasic taxonomy, a consensus approach to bacterial systematics. . Microbiol Rev 60:.[PubMed]
    [Google Scholar]
  50. Wayne L. , Brenner D. , Colwell R. , Grimont P. , Kandler O. , Krichevsky M. , Moore L. , Moore W. , Murray R. et al. ( 1987;). Report of the ad-hoc-committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37: 463–464.[CrossRef]
    [Google Scholar]
  51. Yumoto I. , Hirota K. , Kawahara T. , Nodasaka Y. , Okuyama H. , Matsuyama H. , Yokota Y. , Nakajima K. , Hoshino T. . ( 2004;). Anoxybacillus voinovskiensis sp. nov., a moderately thermophilic bacterium from a hot spring in Kamchatka. . Int J Syst Evol Microbiol 54: 1239–1242. [CrossRef] [PubMed]
    [Google Scholar]
  52. Zhang C. M. , Huang X. W. , Pan W. Z. , Zhang J. , Wei K. B. , Klenk H. P. , Tang S. K. , Li W. J. , Zhang K. Q. . ( 2011;). Anoxybacillus tengchongensis sp. nov. and Anoxybacillus eryuanensis sp. nov., facultatively anaerobic, alkalitolerant bacteria from hot springs. . Int J Syst Evol Microbiol 61: 118–122. [CrossRef] [PubMed]
    [Google Scholar]
  53. Zhang X. Q. , Zhang Z. L. , Wu N. , Zhu X. F. , Wu M. . ( 2013;). Anoxybacillus vitaminiphilus sp. nov., a strictly aerobic and moderately thermophilic bacterium isolated from a hot spring. . Int J Syst Evol Microbiol 63: 4064–4071. [CrossRef] [PubMed]
    [Google Scholar]
  54. Zhao H. P. , Wu Q. S. , Wang L. , Zhao X. T. , Gao H. W. . ( 2009;). Degradation of phenanthrene by bacterial strain isolated from soil in oil refinery fields in Shanghai China. . J Hazard Mater 164: 863–869. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001125
Loading
/content/journal/ijsem/10.1099/ijsem.0.001125
Loading

Data & Media loading...

Supplementary File 1



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error