1887

Abstract

A novel Gram-stain-negative, aerobic, motile by gliding and filamentous strain, designated 772,was isolated from surface-sterilized root tissue of maize planted in the Fangshan District of Beijing, China. 16S rRNA gene sequence analysis indicated that strain 772 was closely related to SR2-06 and YT21of the family with sequence similarities of 99.0 and 96.9 %, respectively. However, the new isolate exhibited relatively low levels of DNA–DNA relatedness with respect to KCTC 42060 (18.7±1.8 %) and DSM 21054(17.9±2.0%). The DNA G+C content of strain 772 was 44.9 mol%. The respiratory quinone was menaquinone-7 and the polar lipid profile consisted of phosphatidylethanolamine, two unidentified aminophospholipids, two unidentified phospholipids and one unidentified lipid. The major fatty acids were iso-C and iso-CG. The results of the physiological and biochemical tests and minor differences in the fatty acid profiles allowed the clear phenotypic differentiation of strain 772 from the closely related species and. Strain 772thus represents a novel species within the genus , for which the name sp. nov. is proposed. The type strain is 772 (=CGMCC 1.15290=DSM 100760).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001116
2016-07-01
2020-04-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/7/2730.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001116&mimeType=html&fmt=ahah

References

  1. Bligh E. G., Dyer W. J.. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol37:911–917 [CrossRef][PubMed]
    [Google Scholar]
  2. Breznak J. A., Costilow R. N.. 2007; Physicochemical factors in growth. In Methods for General and Molecular Bacteriology, 3rd edn. pp.309–329 Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt. T. M., Snyder L. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  3. Collins M., Jones D.. 1980; Lipids in the classification and identification of coryneform bacteria containing peptido-glycans based on 2,4-diaminobutyric acid. J Appl Microbiol 48:459–470
    [Google Scholar]
  4. Collins M. D.. 1985; Isoprenoid quinone analysis in classification and identification. In Chemical Methods in Bacterial Systematics pp.267–287 Edited by Goodfellow M., Minnikin D. E.. London: Academic Press;
    [Google Scholar]
  5. Consden R., Gordon A. H.. 1948; The effect of salt on partition chromatograms. Nature162:180–181 [CrossRef][PubMed]
    [Google Scholar]
  6. Delory G. E., King E. J.. 1945; A sodium carbonate-bicarbonate buffer for alkaline phosphatases. Biochem J39:245 [CrossRef][PubMed]
    [Google Scholar]
  7. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  8. Gao J. L., Yuan M., Wang X. M., Qiu T. L., Lv F. Y., Yang M. M., Sun J. G.. 2016; Paenibacillus radicis sp. nov., a endophytic bacterium isolated from maize root in China. Int J Syst Evol Microbiol 66:801–811[CrossRef]
    [Google Scholar]
  9. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. (editors) 1994; Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  10. Han J. H., Kim T. S., Joung Y., Kim S. B.. 2015; Filimonas endophytica sp. nov., isolated from surface-sterilized root of Cosmos bipinnatus. Int J Syst Evol Microbiol65:4863–4867 [CrossRef][PubMed]
    [Google Scholar]
  11. Hegazi N. A., Hamza A. M., Osman A., Ali S., Sedik M. Z., Fayez M.. 1998; Modified combined carbon N-deficient medium for isolation, enumeration and biomass production of diazotrophs. In Nitrogen Fixation with Nonlegumes pp.247–253 Edited by Kauser. M. A., Sajjad M. M.. Dordrecht: Kluwer Academic Publishers;[CrossRef]
    [Google Scholar]
  12. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H. et al. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  13. Komagata K., Suzuki K.. 1988; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol19:161–207[CrossRef]
    [Google Scholar]
  14. Kämpfer P., Lodders N., Falsen E.. 2011; Hydrotalea flava gen. nov., sp. nov., a new member of the phylum Bacteroidetes and allocation of the genera Chitinophaga, Sediminibacterium, Lacibacter, Flavihumibacter, Flavisolibacter, Niabella, Niastella, Segetibacter, Parasegetibacter, Terrimonas, Ferruginibacter, Filimonas and Hydrotalea to the family Chitinophagaceae fam. nov. Int J Syst Evol Microbiol61:518–523 [CrossRef][PubMed]
    [Google Scholar]
  15. Lane D. J.. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematic pp.115–175 Edited by Stackerandt. E., Goodfellow M.. Chichester: Wiley;
    [Google Scholar]
  16. Leandro T., França L., Nobre M. F., Rainey F. A., da Costa M. S.. 2013; Heliimonas saccharivorans gen. nov., sp. nov., a member of the family Chitinophagaceae isolated from a mineral water aquifer, and emended description of Filimonas lacunae . Int J Syst Evol Microbiol63:3793–3799 [CrossRef][PubMed]
    [Google Scholar]
  17. Marmur J.. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol3:208–218 [CrossRef]
    [Google Scholar]
  18. Marmur J., Doty P.. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol5:109–118 [CrossRef][PubMed]
    [Google Scholar]
  19. Miller J. H.. 1972; Experiments in Molecular Genetics. Cold Spring Harbour NY: Cold Spring Harbour Laboratory Press;
    [Google Scholar]
  20. Minnikin D., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  21. Reasoner D. J., Geldreich E. E.. 1985; A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol49:1–7[PubMed]
    [Google Scholar]
  22. Rzhetsky A., Nei M.. 1992; Statistical properties of the ordinary least-squares, generalized least-squares, and minimum-evolution methods of phylogenetic inference. J Mol Evol35:367–375 [CrossRef][PubMed]
    [Google Scholar]
  23. Rzhetsky A., Nei M.. 1993; Theoretical foundation of the minimum-evolution method of phylogenetic inference. Mol Biol Evol10:1073–1095[PubMed]
    [Google Scholar]
  24. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  25. Shiratori H., Tagami Y., Morishita T., Kamihara Y., Beppu T., Ueda K.. 2009; Filimonas lacunae gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from fresh water. Int J Syst Evol Microbiol59:1137–1142 [CrossRef][PubMed]
    [Google Scholar]
  26. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  27. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  28. Wu C., Lu X., Qin M., Wang Y., Ruan J.. 1989; The analysis of menaquinone compound in microbial cells by HPLC. Microbiology [English Translation of Microbiology (Beijing)]16:176–178
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001116
Loading
/content/journal/ijsem/10.1099/ijsem.0.001116
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error