1887

Abstract

A thermophilic and phospholipid-degrading bacterium, designated strain B157, was isolated from acidulocompost, a garbage compost processed under acidic conditions at moderately high temperature. The organism was Gram-stain-positive, aerobic, spore-forming and rod-shaped. Growth was observed to occur at 40–65 °C and pH 4.8–8.1 (optimum growth: 50–60 °C, pH 6.2). The strain was catalase- and oxidase-positive. The cell wall contained -diaminopimelic acid, alanine, glutamic acid and galactose. The predominant respiratory quinone was menaquinone-7 (MK-7) and the major fatty acids were anteiso-C and iso-C. Comparative 16S rRNA gene sequence analysis showed that strain B157 was related most closely to 607 (94.8 % identity), and the phylogenetic analysis revealed that it belonged to the family . The DNA G+C content was determined as 51.8 mol%. In spite of many similarities with the type strains of members of the family , genotypic analyses suggest that strain B157 represents a novel species of a new genus, gen. nov., sp. nov. The type strain of is B157 (=NBRC 111400=DSM 101100).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001108
2016-07-01
2020-10-01
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/7/2684.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001108&mimeType=html&fmt=ahah

References

  1. Aloulou A., Ali Y. B., Bezzine S., Gargouri Y., Gelb M. H.. 2012; Phospholipases: an overview. In Lipases and Phospholipases pp63–85 Humana Press;[CrossRef]
    [Google Scholar]
  2. Asano R., Otawa K., Ozutsumi Y., Yamamoto N., Abdel-Mohsein H. S., Nakai Y.. 2010; Development and analysis of microbial characteristics of an acidulocomposting system for the treatment of garbage and cattle manure. J Biosci Bioeng110:419–425 [CrossRef][PubMed]
    [Google Scholar]
  3. Bligh E. G., Dyer W. J.. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol37:911–917 [CrossRef][PubMed]
    [Google Scholar]
  4. Bäckhed F., Ley R. E., Sonnenburg J. L., Peterson D. A., Gordon J. I.. 2005; Host-bacterial mutualism in the human intestine. Science307:1915–1920 [CrossRef][PubMed]
    [Google Scholar]
  5. Chang Y. H., Jung M. Y., Park I. S., Oh H. M.. 2008; Sporolactobacillus vineae sp. nov., a spore-forming lactic acid bacterium isolated from vineyard soil. Int J Syst Evol Microbiol58:2316–2320 [CrossRef][PubMed]
    [Google Scholar]
  6. Chang Y. H., Stackebrandt E.. 2014; The Family Sporolactobacillaceae . In The Prokaryotes , pp.353–362 Berlin Heidelberg: Springer;
    [Google Scholar]
  7. De Maria L., Vind J., Oxenbøll K. M., Svendsen A., Patkar S.. 2007; Phospholipases and their industrial applications. Appl Microbiol Biotechnol74:290–300 [CrossRef][PubMed]
    [Google Scholar]
  8. DeLong E. F.. 1992; Archaea in coastal marine environments. Proc Natl Acad Sci U S A89:5685–5689[PubMed][CrossRef]
    [Google Scholar]
  9. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376[PubMed][CrossRef]
    [Google Scholar]
  10. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416[CrossRef]
    [Google Scholar]
  11. Fujita R., Mochida K., Kato Y., Goto K.. 2010; Sporolactobacillus putidus sp. nov., an endospore-forming lactic acid bacterium isolated from spoiled orange juice. Int J Syst Evol Microbiol60:1499–1503 [CrossRef][PubMed]
    [Google Scholar]
  12. Haruta S., Nakayama T., Nakamura K., Hemmi H., Ishii M., Igarashi Y., Nishino T.. 2005; Microbial diversity in biodegradation and reutilization processes of garbage. J Biosci Bioeng99:1–11 [CrossRef][PubMed]
    [Google Scholar]
  13. Hatayama K., Shoun H., Ueda Y., Nakamura A.. 2006; Tuberibacillus calidus gen. nov., sp. nov., isolated from a compost pile and reclassification of Bacillus naganoensis Tomimura et al. 1990 as Pullulanibacillus naganoensis gen. nov., comb. nov. and Bacillus laevolacticus Andersch et al. 1994 as Sporolactobacillus laevolacticus comb. nov. Int J Syst Evol Microbiol56:2545–2551 [CrossRef][PubMed]
    [Google Scholar]
  14. Hemmi H., Shimoyama T., Nakayama T., Hoshi K., Nishino T.. 2004; Molecular biological analysis of microflora in a garbage treatment process under thermoacidophilic conditions. J Biosci Bioeng97:119–126 [CrossRef][PubMed]
    [Google Scholar]
  15. Ichihara K., Yamaguchi C., Araya Y., Sakamoto A., Yoneda K.. 2010; Preparation of fatty acid methyl esters by selective methanolysis of polar glycerolipids. Lipids45:367–374 [CrossRef][PubMed]
    [Google Scholar]
  16. Ichihara K., Tani A.. 2012; Simple procedure for fatty acid analysis of glycerophospholipids in Escherichia coli and Saccharomyces cerevisiae . J Biosci Bioeng114:472–475 [CrossRef][PubMed]
    [Google Scholar]
  17. Kim M. K., Rhee J. S.. 1994; Simple and rapid screening methods for microorganisms with phospholipase A 1 , A 2 and C activities. Biotechnol Tech8:635–638
    [Google Scholar]
  18. Li W. J., Zhang Y. Q., Schumann P., Tian X. P., Zhang Y. Q., Xu L. H., Jiang C. L.. 2006; Sinococcus qinghaiensis gen. nov., sp. nov., a novel member of the order Bacillales from a saline soil in China. Int J Syst Evol Microbiol56:1189–1192 [CrossRef][PubMed]
    [Google Scholar]
  19. Logan N. A., De Vos P.. 2009; Family Bacillaceae . Bergey's Manual of Systematic Bacteriology3:20–228
    [Google Scholar]
  20. Ludwig W., Schleifer K. H., Whitman W. B.. 2011; Family VII. Sporolactobacillaceae fam. nov. Bergey's . Manual of Systematic Bacteriology 3:386–391
    [Google Scholar]
  21. Nishino T., Nakayama T., Hemmi H., Shimoyama T., Yamashita S., Akai M., Kanagawa T., Hoshi K.. 2003; Acidulocomposting, an accelerated composting process of garbage under thermoacidophilic conditions for prolonged periods. J Environ Biotechnol3:33–36
    [Google Scholar]
  22. Pearson W. R., Lipman D. J.. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A85:2444–2448[PubMed][CrossRef]
    [Google Scholar]
  23. Pereira S. G., Albuquerque L., Nobre M. F., Tiago I., Veríssimo A., Pereira A., da Costa M. S.. 2013; Pullulanibacillus uraniitolerans sp. nov., an acidophilic, U(VI)-resistant species isolated from an acid uranium mill tailing effluent and emended description of the genus Pullulanibacillus. Int J Syst Evol Microbiol63:158–162 [CrossRef][PubMed]
    [Google Scholar]
  24. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  25. Sambrook J., Fritsch E. F., Maniatis T.. 1989; Molecular Cloning New York: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  26. Sanger F.. 1981; Determination of nucleotide sequences in DNA. Science214:1205–1210[PubMed][CrossRef]
    [Google Scholar]
  27. Schleifer K. H., Kandler O.. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev36:407–477[PubMed]
    [Google Scholar]
  28. Schleifer K. H.. 1985; Analysis of the chemical composition and primary structure of murein. Methods Microbiol18:123–156[CrossRef]
    [Google Scholar]
  29. Shigeri Y., Matsui T., Watanabe K.. 2009; Decomposition of intact chicken feathers by a thermophile in combination with an acidulocomposting garbage-treatment process. Biosci Biotechnol Biochem73:2519–2521 [CrossRef][PubMed]
    [Google Scholar]
  30. Sneath P. H.. 1986; Endospore-forming gram-positive rods and cocci. Bergey's Manual of Systematic Bacteriology2:1104–1207
    [Google Scholar]
  31. Staneck J. L., Roberts G. D.. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol28:226–231[PubMed]
    [Google Scholar]
  32. Suematsu T., Yamashita S., Hemmi H., Yoshinari A., Shimoyama T., Nakayama T., Nishino T.. 2012; Quantitative analyses of the behavior of exogenously added bacteria during an acidulocomposting process. J Biosci Bioeng114:70–72 [CrossRef][PubMed]
    [Google Scholar]
  33. Tajima R., Yamamoto T., Omura M., Nakai Y., Ito T., Saito M.. 2014; Assessment of greenhouse gas emissions of the production and utilization of acidulocompost from fish Meal. Journal of Life Cycle Assessment, Japan9:340–348 (in Japanese)[CrossRef]
    [Google Scholar]
  34. Thamacharoensuk T., Kitahara M., Ohkuma M., Thongchul N., Tanasupawat S.. 2015; Sporolactobacillus shoreae sp. nov. and Sporolactobacillus spathodeae sp. nov., two spore-forming lactic acid bacteria isolated from tree barks in Thailand. Int J Syst Evol Microbiol65:1220–1226 [CrossRef][PubMed]
    [Google Scholar]
  35. Yanagida F., Suzuki K. I., Kozaki M., Komagata K.. 1997; Proposal of Sporolactobacillus nakayamae subsp. nakayamae sp. nov., subsp. nov., Sporolactobacillus nakayamae subsp. racemicus subsp. nov., Sporolactobacillus terrae sp. nov., Sporolactobacillus kofuensis sp. nov., and Sporolactobacillus lactosus sp. nov. Int J Syst Bacteriol47:499–504[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001108
Loading
/content/journal/ijsem/10.1099/ijsem.0.001108
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error