1887

Abstract

A Gram-stain-negative, facultatively anaerobic, motile and rod-shaped bacterial strain, designated THG-DN8.8, was isolated from the rhizosphere of a wild strawberry plant, located on Gyeryong Mountain, Daejeon, Republic of Korea. According to 16S rRNA gene sequence comparisons, the isolate was identified as a member of the genus and was related most closely to 15F3(97.7 % sequence similarity), THG-01(97.3 %), DCY55(96.9 %) and CS100 (96.7 %). Catalase and oxidase tests were positive. Levels of DNA–DNA relatedness with its phylogenetically closest neighbours were below 40.0 %. The DNA G+C content was determined to be 39.1 mol%. Strain THG-DN8.8 also was found to be able to grow at 4–33 °C, with 0–2 % (w/v) NaCl and at pH 5.5–9.5. The major fatty acids were iso-C, summed feature 3 (comprising C 7 and/or C 6) and C. Menaquinone-6 (MK-6) was the dominant respiratory quinone, and phosphatidylethanolamine and phosphatidyldiethanolamine were the main polar lipids. On the basis of the data presented, strain THG-DN8.8 represents a novel species, for which the name sp. nov. is proposed. The type strain is THG-DN8.8 (=KCTC 42726=CCTCC AB 2015295).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001104
2016-07-01
2020-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/7/2629.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001104&mimeType=html&fmt=ahah

References

  1. Bergey D. H., Harrison F. C., Breed R. S., Hammer B. W., Huntoon F. M.. 1923; Genus II. Flavobacterium Gen. nov. In Bergey’s Manual of Determinative Bacteriology97117 Baltimore, MD: Williams & Wilkins;
    [Google Scholar]
  2. Bernardet J. F., Segers P., Vancanneyt M., Berthe F., Kersters K., Vandamme P.. 1996; Cutting a gordian knot: Emended classifica-tion and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (basonym, cytophaga aquatilis strohl and tait 1978). Int J Syst Bacteriol46:128–148 [CrossRef]
    [Google Scholar]
  3. Collins M. D., Jones D.. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev45:316–354[PubMed]
    [Google Scholar]
  4. Dong K., Chen F., Du Y., Wang G.. 2013; Flavobacterium enshiense sp. nov., isolated from soil, and emended descriptions of the genus Flavobacterium and Flavobacterium cauense, F lavobacterium saliperosum and Flavobacterium suncheonense . Int J Syst Evol Microbiol63:886–892 [CrossRef][PubMed]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E.. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol39:224–229 [CrossRef]
    [Google Scholar]
  6. Fautz E., Reichenbach H.. 1980; A simple test for flexirubin-type pigments. FEMS Microbiol Lett8:87–91 [CrossRef]
    [Google Scholar]
  7. Felsenstein J.. 1985; Confidence limit on phylogenies: An approach using the bootstrap. Evolution Int J Org Evol39:783–791 [CrossRef]
    [Google Scholar]
  8. Fu Y., Tang X., Lai Q., Zhang C., Zhong H., Li W., Liu Y., Chen L., Sun F. et al. 2011; Flavobacterium beibuense sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 61:205–209 [CrossRef]
    [Google Scholar]
  9. Hall T. A.. 1999; Bioedit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl Acids Symp Ser41:95–98
    [Google Scholar]
  10. Hiraishi A., Ueda Y., Ishihara J., Mori T.. 1996; Comparative lipoquinone analysis of influent sewage and activated sludge by high- performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol42:457–469 [CrossRef]
    [Google Scholar]
  11. Kacagan M., Inan K., Belduz A. O., Canakci S.. 2013; Flavobacterium anatoliense sp. nov., isolated from fresh water, and emended description of Flavobacterium ceti . Int J Syst Evol Microbiol63:2075–2081 [CrossRef][PubMed]
    [Google Scholar]
  12. Kang J. Y., Chun J., Jahng K. Y.. 2013; Flavobacterium aciduliphilum sp. nov., isolated from freshwater, and emended description of the genus Flavobacterium . Int J Syst Evol Microbiol63:1633–1638 [CrossRef][PubMed]
    [Google Scholar]
  13. Kim J.-J., Jin H. M., Lee H. J., Jeon C. O., Kanaya E., Koga Y., Takano K., Kanaya S.. 2011a; Flavobacterium banpakuense sp. nov., isolated from leaf-and-branch compost. Int J Syst Evol Microbiol61:1595–1600 [CrossRef]
    [Google Scholar]
  14. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., Yi H., Won S., Chun J.. 2012; Introducing eztaxon-e: A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  15. Kim S.-R., Kim Y.-J., Nguyen N.-L., Min J. W., Jeon J. N., Yang D. U., Yang D.-C.. 2011b; Flavobacterium ginsengiterrae sp. nov., isolated from a ginseng field. J Gen Appl Microbiol57:341–346 [CrossRef]
    [Google Scholar]
  16. Kim Y. J., Kim S. R., Nguyen N. L., Yang D. C.. 2013; Flavobacterium ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol63:4289–4293 [CrossRef][PubMed]
    [Google Scholar]
  17. Kimura M.. 1983; The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press;[CrossRef]
    [Google Scholar]
  18. Kuo I., Saw J., Kapan D. D., Christensen S., Kaneshiro K. Y., Donachie S. P.. 2013; Flavobacterium akiainvivens sp. nov., from decaying wood of Wikstroemia oahuensis, Hawai'i, and emended description of the genus Flavobacterium . Int J Syst Evol Microbiol63:3280–3286 [CrossRef][PubMed]
    [Google Scholar]
  19. Kämpfer P., Lodders N., Martin K., Avendaño-Herrera R.. 2012; Flavobacterium chilense sp. nov. and flavobacterium araucananum sp. nov., isolated from farmed salmonid fish. Int J Syst Evol Microbiol62:1402–1408 [CrossRef][PubMed]
    [Google Scholar]
  20. Lee S., Weon H. Y., Han K., Ahn T. Y.. 2012; Flavobacterium dankookense sp. nov., isolated from a freshwater reservoir, and emended descriptions of Flavobacterium cheonanense, F. chungnamense, F. koreense and F. aquatile . Int J Syst Evol Microbiol 62:2378–2382 [CrossRef]
    [Google Scholar]
  21. Lim C. S., Oh Y. S., Lee J. K., Park A. R., Yoo J. S., Rhee S. K., Roh D. H.. 2011; Flavobacterium chungbukense sp. nov., isolated from soil. Int J Syst Evol Microbiol61:2734–2739 [CrossRef][PubMed]
    [Google Scholar]
  22. Liu H., Liu R., Yang S. Y., Gao W. K., Zhang C. X., Zhang K. Y., Lai R.. 2008; Flavobacterium anhuiense sp. nov., isolated from field soil. Int J Syst Evol Microbiol58:756–760 [CrossRef][PubMed]
    [Google Scholar]
  23. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  24. Minnikin D. E., Patel P. V., Alshamaony L., Goodfellow M.. 1977; Polar lipid composition in the classification of nocardia and related bacteria. Int J Syst Bacteriol27:104–117 [CrossRef]
    [Google Scholar]
  25. Minnikin D. E., O’Donnel A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parleet J. H.. 1984; An intergrated procedure for the extraction of bacterial isoprenoid quinines and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  26. Moore D. D., Dowhan D.. 1995; Preparation and Analysis of DNA. In Current Protocols in Molecular Biology pp2–11 Ausubel F. W., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. New York: Wiley;
    [Google Scholar]
  27. Ngo H. T., Kook M., Yi T. H.. 2015; Flavobacterium daemonensis sp. nov., isolated from daemo mountain soil. Int J Syst Evol Microbiol65:983–989 [CrossRef][PubMed]
    [Google Scholar]
  28. Saitou N., Nei M.. 1987; The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Bio Evol4:406–425
    [Google Scholar]
  29. Sasser M.. 1990; Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids. MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  30. Sheu S. Y., Lin Y. S., Chen W. M.. 2013; Flavobacterium squillarum sp. nov., isolated from a freshwater shrimp culture pond, and emended descriptions of Flavobacterium haoranii, Flavobacterium cauense, Flavobacterium terrae and Flavobacterium aquatile . Int J Syst Evol Microbiol63:2239–2247 [CrossRef][PubMed]
    [Google Scholar]
  31. Subhash Y., Sasikala C., Ramana C. H. V.. 2013; Flavobacterium aquaticum sp. nov., isolated from a water sample of a rice field. Int J Syst Evol Microbiol63:3463–3469 [CrossRef][PubMed]
    [Google Scholar]
  32. Tamaoka J., Katayama-Fujiruma A., Kuraishi H.. 1983; Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol54:31–36 [CrossRef]
    [Google Scholar]
  33. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. MolBiolEvol28:2731–2739 [CrossRef]
    [Google Scholar]
  34. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  35. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; bacteriology report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464[CrossRef]
    [Google Scholar]
  36. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol173:697–703[PubMed]
    [Google Scholar]
  37. Yang J. E., Kim S. Y., Im W. T., Yi T. H.. 2011; Flavobacterium ginsenosidimutans sp. nov., a bacterium with ginsenoside converting activity isolated from soil of a ginseng field. Int J Syst Evol Microbiol61:1408–1412 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001104
Loading
/content/journal/ijsem/10.1099/ijsem.0.001104
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error