1887

Abstract

A Gram-reaction-positive, strictly aerobic, capsule-forming, motile and rod-shaped bacterium, designated strain XD80, was isolated from the soil of a native cave in Lichuan, Hubei province, China. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain XD80 was most closely related to Domibacillus iocasae CCTCC AB 2015183 (98.66 % sequence similarity), followed by Domibacillus robiginosus DSM 25058(97.83 %), Domibacillus tundrae KCTC 33549 (97.70 %), Domibacillus enclensis CCTCC AB 2011121 (97.21 %) and Domibacillus indicus DSM 28032 (96.96 %). Levels of DNA–DNA relatedness between strain XD80 and D. iocasae CCTCC AB 2015183, D. robiginosusDSM 25058, D. tundrae KCTC 33549 and D. enclensis CCTCC AB 2011121 were 37.4 %, 53.8 %, 53.6 % and 52.7 %, respectively. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, aminophospholipid and two unknown phospholipids. The predominant fatty acids (>5 %) were iso-C15 : 0 (37.3 %), anteiso-C15 : 0 (10.8 %), C16 : 0 (10.4 %), iso-C17 : 0 (10.3 %), C16 : 1ω11c (9.6 %) and anteiso-C17 : 0 (7.4 %). MK-6 (86.4 %) was the major respiratory quinone. The DNA G+C content was 46.4 mol%. The cell-wall peptidoglycan contained meso-diaminopimelic acid (type A1γ). Ribose and glucose were the major whole-cell sugars. In addition, strain XD80 showed differential physiological characteristics from most members of the genus Domibacillus , encompassing hydrolysis of starch, acid production from inositol and raffinose, and production of valine arylamidase. The results of this polyphasic study indicated that strain XD80 represents a novel species of the genus Domibacillus , for which the name Domibacillus antri sp. nov. is proposed. The type strain is XD80(=CCTCC AB 2015053=KCTC 33636).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001080
2016-07-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/7/2502.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001080&mimeType=html&fmt=ahah

References

  1. Brill J. A. , Wiegel J. . ( 1997;). Differentiation between spore-forming and asporogenic bacteria using a PCR and Southern hybridization based method. . J of Microbiol Methods 31: 29–36.[CrossRef]
    [Google Scholar]
  2. Collins M. D. , Jones D. . ( 1980;). Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. . J Appl Bacteriol 48: 459–470.[CrossRef]
    [Google Scholar]
  3. Cowan S. T. , Steel K. J. . ( 1965;). Manual for the Identification of Medical Bacteria, London:: Cambridge University Press;.
    [Google Scholar]
  4. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12: 133–142.[PubMed] [CrossRef]
    [Google Scholar]
  5. Dong X. Z. , Cai M. Y. . ( 2001;). Determinative Manual for Routine Bacteriology, Beijing:: Scientific Press;.
    [Google Scholar]
  6. Dussault H. P. . ( 1955;). An improved technique for staining red halophilic bacteria. . J Bacteriol 70: 484–485.[PubMed]
    [Google Scholar]
  7. Fan H. , Su C. , Wang Y. , Yao J. , Zhao K. , Wang Y. , Wang G. . ( 2008;). Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. . J Appl Microbiol 105: 529–539. [CrossRef] [PubMed]
    [Google Scholar]
  8. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17: 368–376.[PubMed] [CrossRef]
    [Google Scholar]
  9. Felsenstein J. . ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39: 783–791.[CrossRef]
    [Google Scholar]
  10. Fitch W. M. . ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. . Systematic Zool 20: 406–416.[CrossRef]
    [Google Scholar]
  11. Gyeong H. R. , Baek K. , Hwang C. Y. , Park K. H. , Kim H. M. , Lee H. K. , Lee Y. K. . ( 2015;). Domibacillus tundrae sp. nov., isolated from active layer soil of tussock tundra in Alaska, and emended description of the genus Domibacillus . . Int J Syst Evol Microbiol .
    [Google Scholar]
  12. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. et al. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  13. Kimura M. . ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16: 111–120.[PubMed] [CrossRef]
    [Google Scholar]
  14. Kroppenstedt R. M. . ( 1982;). Separation of bacterial menaquinones by HPLC using reverse phase (RP18) and a silver loaded ion exchanger as stationary phases. . J Liq Chromatogr 5: 2359–2367.[CrossRef]
    [Google Scholar]
  15. Kroppenstedt R. M. . ( 1985;). Fatty acid and menaquinone analysis of actinomycetes and related organisms. . In Chemical Methods in Bacterial Systematics (Society for Applied Bacteriology Technical Series),vol. 20 173–199. Edited by Goodfellow. M. , Minnikin D. E. . New York:: Academic Press;.
    [Google Scholar]
  16. Larkin M. A. , Blackshields G. , Brown N. P. , Chenna R. , McGettigan P. A. , McWilliam H. , Valentin F. , Wallace I. M. , Wilm A. et al. ( 2007;). Clustal W and Clustal X version 2.0. . Bioinformatics 23: 2947–2948. [CrossRef] [PubMed]
    [Google Scholar]
  17. Logan N. A. , Berge O. , Bishop A. H. , Busse H. J. , De Vos P. , Fritze D. , Heyndrickx M. , Kämpfer P. , Rabinovitch L. et al. ( 2009;). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. . Int J Syst Evol Microbiol 59: 2114–2121. [CrossRef] [PubMed]
    [Google Scholar]
  18. Ryu E. . ( 1940;). A simple method of differentiation between Gram-positive and Gram-negative organisms without staining. . Kitasato Arch Exp Med 17: 58–63.
    [Google Scholar]
  19. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4: 406–425.[PubMed]
    [Google Scholar]
  20. Sasser M. . ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. . MIDI Technical Note 101, Newark,DE:: MIDI Inc;.
    [Google Scholar]
  21. Schumann P. . ( 2011;). Peptidoglycan structure. . Methods Microbiol 38: 101–129.[CrossRef]
    [Google Scholar]
  22. Seiler H. , Wenning M. , Scherer S. . ( 2013;). Domibacillus robiginosus gen. nov., sp. nov., isolated from a pharmaceutical clean room. . Int J Syst Evol Microbiol 63: 2054–2061. [CrossRef] [PubMed]
    [Google Scholar]
  23. Sharma A. , Dhar S. K. , Prakash O. , Vemuluri V. R. , Thite V. , Shouche Y. S. . ( 2014;). Description of Domibacillus indicus sp. nov., isolated from ocean sediments and emended description of the genus Domibacillus . . Int J Syst Evol Microbiol 64: 3010–3015. [CrossRef] [PubMed]
    [Google Scholar]
  24. Sonalkar V. V. , Mawlankar R. , Krishnamurthi S. , Tang S. K. , Dastager S. G. . ( 2014;). Domibacillus enclensis sp. nov., isolated from marine sediment, and emended description of the genus Domibacillus . . Int J Syst Evol Microbiol 64: 4098–4102. [CrossRef] [PubMed]
    [Google Scholar]
  25. Sun Q.-L. , Sun L. . ( 2015;). Description of Domibacillus iocasae sp. nov., isolated from the deep sea sediment of Okinawa trough, and emended description of the genus Domibacillus . . Int J Syst Evol Microbiol doi: 10.1099/ijsem.0.000823. [CrossRef]
    [Google Scholar]
  26. Tamaoka J. , Komagata K. . ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiology Letters 25: 125–128.[CrossRef]
    [Google Scholar]
  27. Tamura K. , Stecher G. , Peterson D. , Filipski A. , Kumar S. . ( 2013;). MEGA6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30: 2725–2729. [CrossRef] [PubMed]
    [Google Scholar]
  28. Weeger W. , Lièvremont D. , Perret M. , Lagarde F. , Hubert J. C. , Leroy M. , Lett M. C. . ( 1999;). Oxidation of arsenite to arsenate by a bacterium isolated from an aquatic environment. . Biometals 12: 141–149.[PubMed] [CrossRef]
    [Google Scholar]
  29. Wilson K. H. , Blitchington R. B. , Greene R. C. . ( 1990;). Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. . J Clin Microbiol 28: 1942–1946.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001080
Loading
/content/journal/ijsem/10.1099/ijsem.0.001080
Loading

Data & Media loading...

Supplements

Supplementary File 1



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error