1887

Abstract

It has been proposed to split the genus Burkholderia into two genera according to phylogenetic clustering: (1) a genus retaining this name and consisting mainly of animal and plant pathogens and (2) the genus Paraburkholderia including so-called environmental bacteria. The latter genus name has been validly published recently. During the period between the effective and valid publications of the genus name Paraburkholderia , 16 novel species of the genus Burkholderiawere described, but only two of them can be classified as members of this genus based on the emended genus description. Analysis of traits and phylogenetic positions of the other 11 species shows that they belong to the genus Paraburkholderia , and we propose to transfer them to this genus. The reclassified species names are proposed as Paraburkholderia dipogonis comb. nov., Paraburkholderia ginsengiterrae comb. nov., Paraburkholderia humisilvae comb. nov., Paraburkholderia insulsa comb. nov., Paraburkholderia kirstenboschensis comb. nov., Paraburkholderia metalliresistens comb. nov., Paraburkholderia monticola comb. nov., Paraburkholderia panaciterrae comb. nov., Paraburkholderia rhizosphaerae comb. nov., Paraburkholderia solisilvae comb. nov. and Paraburkholderia susongensis comb. nov. The remaining three species are transferred to the new genus Caballeronia gen. nov. proposed to accommodate twelve species of the genera Burkholderia and Paraburkholderia forming a distinctive clade in phylogenetic trees. The new genus members are Caballeronia choica comb. nov., Caballeronia cordobensis comb. nov., Caballeronia glathei comb. nov., Caballeronia grimmiae comb. nov., Caballeronia humi comb. nov., Caballeronia megalochromosomata comb. nov., Caballeronia jiangsuensis comb. nov., Caballeronia sordidicola comb. nov., Caballeronia telluris comb. nov., Caballeronia terrestris comb. nov., Caballeronia udeis comb. nov., and Caballeronia zhejiangensis comb. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001065
2016-08-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/2836.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001065&mimeType=html&fmt=ahah

References

  1. Angus A. A. , Agapakis C. M. , Fong S. , Yerrapragada S. , Estrada-de los Santos P. , Yang P. , Song N. , Kano S. , Caballero-Mellado J. et al. ( 2014;). Plant-associated symbiotic Burkholderia species lack hallmark strategies required in mammalian pathogenesis. . PLoS One 9: e83779. [CrossRef] [PubMed]
    [Google Scholar]
  2. Baek I. , Seo B. , Lee I. , Lee K. , Park S. C. , Yi H. , Chun J. . ( 2015a;). Burkholderia megalochromosomata sp. nov., isolated from grassland soil. . Int J Syst Evol Microbiol 65: 959–964. [CrossRef] [PubMed]
    [Google Scholar]
  3. Baek I. , Seo B. , Lee I. , Yi H. , Chun J. . ( 2015b;). Burkholderia monticola sp. nov., isolated from mountain soil. . Int J Syst Evol Microbiol 65: 504–509. [CrossRef] [PubMed]
    [Google Scholar]
  4. Coenye T. , Laevens S. , Willems A. , Ohlén M. , Hannant W. , Govan J. R. , Gillis M. , Falsen E. , Vandamme P. . ( 2001;). Burkholderia fungorum sp. nov. and Burkholderia caledonica sp. nov., two new species isolated from the environment, animals and human clinical samples. . Int J Syst Evol Microbiol 51: 1099–1107. [CrossRef] [PubMed]
    [Google Scholar]
  5. De Smet B. , Mayo M. , Peeters C. , Zlosnik J. E. , Spilker T. , Hird T. J. , LiPuma J. J. , Kidd T. J. , Kaestli M. et al. ( 2015;). Burkholderia stagnalis sp. nov. and Burkholderia territorii sp. nov., two novel Burkholderia cepacia complex species from environmental and human sources. . Int J Syst Evol Microbiol 65: 2265–2271. [CrossRef] [PubMed]
    [Google Scholar]
  6. Draghi W. O. , Peeters C. , Cnockaert M. , Snauwaert C. , Wall L. G. , Zorreguieta A. , Vandamme P. . ( 2014;). Burkholderia cordobensis sp. nov., from agricultural soils. . Int J Syst Evol Microbiol 64: 2003–2008.[CrossRef]
    [Google Scholar]
  7. Estrada-de los Santos P. , Vinuesa P. , Martínez-Aguilar L. , Hirsch A. M. , Caballero-Mellado J. . ( 2013;). Phylogenetic analysis of Burkholderia species by multilocus sequence analysis. . Curr Microbiol 67: 51–60. [CrossRef] [PubMed]
    [Google Scholar]
  8. Farh M. E. A. , Kim Y. J. , Van An H. , Sukweenadhi J. , Singh P. , Huq M. A. , Yang D. C. . ( 2015a;). Burkholderia ginsengiterrae sp. nov. and Burkholderia panaciterrae sp. nov., antagonistic bacteria against root rot pathogen Cylindrocarpon destructans, isolated from ginseng soil. . Arch Microbiol 197: 439–447. [CrossRef] [PubMed]
    [Google Scholar]
  9. Farh M. E. A. , Kim Y. J. , Van An H. , Sukweenadhi J. , Singh P. , Huq M. A. , Yang D. C. . ( 2015b;). Burkholderia ginsengiterrae sp. nov. and Burkholderia panaciterrae sp. nov. In List of New Names and New Combinations Previously Effectively, but not Validly, Published, List no. 166, p. 3764. Edited by A. Oren & G. M. Garrity. . Int J Syst Evol Microbiol 65: 3763–3767.[CrossRef]
    [Google Scholar]
  10. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17: 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  11. Felsenstein J. . ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39: 783–791. [CrossRef]
    [Google Scholar]
  12. Gerrits G. P. , Klaassen C. , Coenye T. , Vandamme P. , Meis J. F. . ( 2005;). Burkholderia fungorum septicemia. . Emerg Infect Dis 11: 1115–1117.[CrossRef]
    [Google Scholar]
  13. Gillis M. , Tran V. V. , Bardin R. , Goor M. , Hebbar P. , Willems A. , Segers P. , Kersters K. , Heulin T. , Fernandez M. P. . ( 1995;). Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam. . Int J Syst Bacteriol 45: 274–289. [CrossRef]
    [Google Scholar]
  14. Gu J. Y. , Zang S. G. , Sheng X. F. , He L. Y. , Huang Z. , Wang Q. . ( 2015;). Burkholderia susongensis sp. nov., a mineral-weathering bacterium isolated from weathered rock surface. . Int J Syst Evol Microbiol 65: 1031–1037. [CrossRef] [PubMed]
    [Google Scholar]
  15. Guo J. K. , Ding Y. Z. , Feng R. W. , Wang R. G. , Xu Y. M. , Chen C. , Wei X. L. , Chen W. M. . ( 2015a;). Burkholderia metalliresistens sp. nov., a multiple metal-resistant and phosphate-solubilising species isolated from heavy metal-polluted soil in Southeast China. . Antonie Van Leeuwenhoek 107: 1591–1598. [CrossRef]
    [Google Scholar]
  16. Guo J. K. , Ding Y. Z. , Feng R. W. , Wang R. G. , Xu Y. M. , Chen C. , Wei X. L. , Chen W. M. . ( 2015b;). Burkholderia metalliresistens sp. nov. In List of New Names and New Combinations Previously Effectively, but not Validly, Published, List no. 165, p.2777. Edited by A. Oren & G. M. Garrity. . Int J Syst Evol Microbiol, 2777–2783.
    [Google Scholar]
  17. Gyaneshwar P. , Hirsch A. M. , Moulin L. , Chen W. M. , Elliott G. N. , Bontemps C. , Estrada-de Los Santos P. , Gross E. , Dos Reis F. B. et al. ( 2011;). Legume-nodulating betaproteobacteria: diversity, host range, and future prospects. . Mol Plant Microbe Interact 24: 1276–1288. [CrossRef] [PubMed]
    [Google Scholar]
  18. Hall T. A. . ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucl Acids Symp Ser 41: 95–98.
    [Google Scholar]
  19. Kimura M. . ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16: 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  20. Lee J. C. , Whang K. S. . ( 2015;). Burkholderia humisilvae sp. nov., Burkholderia solisilvae sp. nov. and Burkholderia rhizosphaerae sp. nov., isolated from forest soil and rhizosphere soil. . Int J Syst Evol Microbiol 65: 2986–2992. [CrossRef] [PubMed]
    [Google Scholar]
  21. Lemaire B. , Van Oevelen S. , De Block P. , Verstraete B. , Smets E. , Prinsen E. , Dessein S. . ( 2012;). Identification of the bacterial endosymbionts in leaf nodules of Pavetta (Rubiaceae). . Int J Syst Evol Microbiol 62: 202–209. [CrossRef] [PubMed]
    [Google Scholar]
  22. Lim Y. W. , Baik K. S. , Han S. K. , Kim S. B. , Bae K. S. . ( 2003;). Burkholderia sordidicola sp. nov., isolated from the white-rot fungus Phanerochaete sordida . . Int J Syst Evol Microbiol 53: 1631–1636. [CrossRef] [PubMed]
    [Google Scholar]
  23. Liu X. Y. , Li C. X. , Luo X. J. , Lai Q. L. , Xu J. H. . ( 2014;). Burkholderia jiangsuensis sp. nov., a methyl parathion degrading bacterium, isolated from methyl parathion contaminated soil. . Int J Syst Evol Microbiol 64: 3247–3253. [CrossRef] [PubMed]
    [Google Scholar]
  24. Lopes-Santos L. , Castro D. B. , Ottoboni L. M. , Park D. , Weir B. S. , Destéfano S. A. . ( 2015;). Draft genome sequence of Burkholderia andropogonis type strain ICMP2807, isolated from Sorghum bicolor . . Genome Announc 3: e0045515. [CrossRef] [PubMed]
    [Google Scholar]
  25. Lu P. , Zheng L. Q. , Sun J. J. , Liu H. M. , Li S. P. , Hong Q. , Li W. J. . ( 2012;). Burkholderia zhejiangensis sp. nov., a methyl-parathion-degrading bacterium isolated from a wastewater-treatment system. . Int J Syst Evol Microbiol 62: 1337–1341. [CrossRef] [PubMed]
    [Google Scholar]
  26. Oren A. , Garrity G. M. . ( 2015a;). List of new names and new combinations previously effectively, but not validly, published. . Int J Syst Evol Microbiol 65: 2017–2025. [CrossRef]
    [Google Scholar]
  27. Oren A. , Garrity G. M. . ( 2015b;). List of new names and new combinations previously effectively, but not validly, published. . Int J Syst Evol Microbiol 65: 2777–2783. [CrossRef]
    [Google Scholar]
  28. Palleroni N. J. , Kunisawa R. , Contopoulou R. , Doudoroff M. . ( 1973;). Nucleic acid homologies in the genus Pseudomonas . . Int J Syst Bacteriol 23: 333–339. [CrossRef]
    [Google Scholar]
  29. Rusch A. , Islam S. , Savalia P. , Amend J. P. . ( 2015;). Burkholderia insulsa sp. nov., a facultatively chemolithotrophic bacterium isolated from an arsenic-rich shallow marine hydrothermal system. . Int J Syst Evol Microbiol 65: 189–194. [CrossRef] [PubMed]
    [Google Scholar]
  30. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4: 406–425.[PubMed]
    [Google Scholar]
  31. Sawana A. , Adeolu M. , Gupta R. S. . ( 2014;). Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. . Front Genet 5: 429. [CrossRef] [PubMed]
    [Google Scholar]
  32. Sawana A. , Adeolu M. , Gupta R. S. . ( 2015a;). Paraburkholderia gen. nov. and Paraburkholderia spp. comb. nov. In List of New Names and New Combinations Previously Effectively, but not Validly, Published, List no. 164, pp. 2019-2021. Edited by A. Oren & G. M. Garrity. . Int J Syst Evol Microbiol 65: 2017–2025.[CrossRef]
    [Google Scholar]
  33. Sawana A. , Adeolu M. , Gupta R. S. . ( 2015b;). Paraburkholderia spp. comb. nov. In List of New Names and New Combinations Previously Effectively, but not Validly, Published, List no.165, p. 2779. Edited by A. Oren & G. M. Garrity. . Int J Syst Evol Microbiol 65: 2777–2783. .[CrossRef]
    [Google Scholar]
  34. Sheu S. Y. , Chen M. H. , Liu W. Y. , Andrews M. , James E. K. , Ardley J. K. , De Meyer S. E. , James T. K. , Howieson J. G. et al. ( 2015;). Burkholderia dipogonis sp. nov., isolated from root nodules of Dipogon lignosus in New Zealand and Western Australia. . Int J Syst Evol Microbiol 65: 4716–4723. [CrossRef] [PubMed]
    [Google Scholar]
  35. Steenkamp E. T. , van Zyl E. , Beukes C. W. , Avontuur J. R. , Chan W. Y. , Palmer M. , Mthombeni L. S. , Phalane F. L. , Sereme T. K. , Venter S. N. . ( 2015;). Burkholderia kirstenboschensis sp. nov. nodulates papilionoid legumes indigenous to South Africa. . Syst Appl Microbiol 38: 545–554. [CrossRef] [PubMed]
    [Google Scholar]
  36. Steenkamp E. T. , van Zyl E. , Beukes C. W. , Avontuur J. R. , Chan W. Y. , Palmer M. , Mthombeni L. S. , Phalane F. L. , Sereme T. K. , Venter S. N. . ( 2016;). Burkholderia kirstenboschensis sp. nov. In List of New Names and New Combinations Previously Effectively, but not Validly, Published, List no. 170, p. 2463. Edited by A. Oren & G. M. Garrity. . Int J Syst Evol Microbiol 66,: 2463-– 2466.[CrossRef]
    [Google Scholar]
  37. Tamura K. , Stecher G. , Peterson D. , Filipski A. , Kumar S. . ( 2013;). MEGA6: molecular evolutionary genetics analysis version 6.0. . Mol Biol Evol 30: 2725–2729. [CrossRef] [PubMed]
    [Google Scholar]
  38. Thompson J. D. , Higgins D. G. , Gibson T. J. . ( 1994;). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. . Nucleic Acids Res 22: 4673–4680. [CrossRef]
    [Google Scholar]
  39. Tian Y. , Kong B. H. , Liu S. L. , Li C. L. , Yu R. , Liu L. , Li Y. H. . ( 2013;). Burkholderia grimmiae sp. nov., isolated from a xerophilous moss (Grimmia montana) . . Int J Syst Evol Microbiol 63: 2108–2113. [CrossRef] [PubMed]
    [Google Scholar]
  40. Vandamme P. , Holmes B. , Vancanneyt M. , Coenye T. , Hoste B. , Coopman R. , Revets H. , Lauwers S. , Gillis M. et al. ( 1997;). Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. . Int J Syst Bacteriol 47: 1188–1200. [CrossRef] [PubMed]
    [Google Scholar]
  41. Vandamme P. , De Brandt E. , Houf K. , Salles J. F. , Van Elsas J. , Spilker T. , Lipuma J. J. . ( 2013;). Burkholderia humi sp. nov., Burkholderia choica sp. nov., Burkholderia telluris sp. nov., Burkholderia terrestris sp. nov. and Burkholderia udeis sp. nov.: Burkholderia glathei-like bacteria from soil and rhizosphere soil. . Int J Syst Evol Microbiol 63: 4707–4718. [CrossRef] [PubMed]
    [Google Scholar]
  42. Vandamme P. , Peeters C. . ( 2014;). Time to revisit polyphasic taxonomy. . Antonie Van Leeuwenhoek 106: 57–65. [CrossRef] [PubMed]
    [Google Scholar]
  43. Yabuuchi E. , Kosako Y. , Oyaizu H. , Yano I. , Hotta H. , Hashimoto Y. , Ezaki T. , Arakawa M. . ( 1992;). Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. . Microbiol Immunol 36: 1251–1275. [CrossRef] [PubMed]
    [Google Scholar]
  44. Yabuuchi E. , Kosako Y. , Yano I. , Hotta H. , Nishiuchi Y. . ( 1995;). Transfer of two Burkholderia and an Alcaligenes species to Ralstonia gen. nov.: proposal of Ralstonia pickettii (Ralston, Palleroni and Doudoroff 1973) comb. nov., Ralstonia solanacearum (Smith 1896) comb. nov. and Ralstonia eutropha (Davis 1969) comb. nov. . Microbiol Immunol. 39: 897–904.[PubMed] [CrossRef]
    [Google Scholar]
  45. Zolg W. , Ottow J. C. G. . ( 1975;). Pseudomonas glathei sp. nov., a new nitrogen-scavenging rod isolated from acid lateritic relicts in Germany. . Z Allg Mikrobiol 15: 287–299. [CrossRef]
    [Google Scholar]
  46. Zolg W. , Ottow J. C. G. . ( 1980;). P. glathei Zolg and Ottow 1975. In Approved Lists of Bacterial Names, p. 351. Edited by V. B. D. Skerman, V. McGowan & P. H. A. Sneath. . Int J Syst Bacteriol 30: 225–420.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001065
Loading
/content/journal/ijsem/10.1099/ijsem.0.001065
Loading

Data & Media loading...

Supplements

Supplementary File 1



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error