1887

Abstract

A Gram-stain-negative, strictly aerobic, non-motile, yellow, rod-shaped bacterium, designated strain E62-3, was isolated from soil of Enshi Grand Canyon, Hubei province, PR China. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain E62-3was most closely related to Sphingomonas laterariae LNB2. Strain E62-3exhibited the highest 16S rRNA gene sequence similarity to Sphingosinicella vermicomposti YC7378(96.0 %), Sphingobium xanthum NL9(95.8 %), Sphingobium boeckii 469(95.7 %) and Sphingomonas laterariae LNB2(95.5 %) within the family Sphingomonadaceae . The major fatty acids (>5 %) of strain E62-3 were C18 : 1ω7c, summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH), C16 : 0 and C14 : 0 2-OH. The predominant respiratory quinone and polyamine were ubiquinone Q-10 and homospermidine, respectively. The predominant polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and phosphatidylcholine. The genomic DNA G+C content was 66.4 mol%. The genotypic, chemotaxonomic and phenotypic data revealed that the isolate represents a novel species of the genus Sphingomonas , for which the name Sphingomonas faucium sp. nov. is proposed. The type strain is E62-3(=KCTC 42834=CCTCC AB 2015300).

Keyword(s): soil and Sphingomonas faucium
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001064
2016-08-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/8/2847.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001064&mimeType=html&fmt=ahah

References

  1. Busse H.-J. , Bunka S. , Hensel A. , Lubitz W. . ( 1997;). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. . Int J Syst Bacteriol 47: 698–708. [CrossRef]
    [Google Scholar]
  2. Busse H. J. , Denner E. B. , Buczolits S. , Salkinoja-Salonen M. , Bennasar A. , Kämpfer P. . ( 2003;). Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas . . Int J Syst Evol Microbiol 53: 1253–1260. [CrossRef] [PubMed]
    [Google Scholar]
  3. Busse J. , Auling G. . ( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . . Syst Appl Microbiol 11: 1–8. [CrossRef]
    [Google Scholar]
  4. Cappuccino J. G. , Sherman N. . ( 2002;). Microbiology: A Laboratory Manual, , 6th Edn., Menlo Park. CA:: Benjamin/Cummings;.
    [Google Scholar]
  5. Chen H. , Jogler M. , Rohde M. , Klenk H.-P. , Busse H.-J. , Tindall B. J. , Sproer C. , Overmann J. . ( 2012a;). Reclassification and emended description of Caulobacter leidyi as Sphingomonas leidyi comb. nov., and emendation of the genus Sphingomonas . . Int J Syst Evol Microbiol 62: 2835–2843. [CrossRef]
    [Google Scholar]
  6. Chen F. , Shi Z. , Wang G. . ( 2012b;). Arenimonas metalli sp. nov., isolated from an iron mine. . Int J Syst Evol Microbiol 62: 1744–1749. [CrossRef]
    [Google Scholar]
  7. Chen H. , Jogler M. , Tindall B. J. , Klenk H. P. , Rohde M. , Busse H. J. , Overmann J. . ( 2013;). Sphingomonas starnbergensis sp. nov., isolated from a prealpine freshwater lake. . Int J Syst Evol Microbiol 63: 1017–1023. [CrossRef] [PubMed]
    [Google Scholar]
  8. Collins M. D. , Jones D. . ( 1980;). Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4‐diaminobutyric acid. . J Appl Bacteriol 48: 459–470. [CrossRef]
    [Google Scholar]
  9. Dong X. Z. , Cai M. Y. . ( 2001;). Determinative Manual for Routine Bacteriology. Beijing:: Scientific Press;.
    [Google Scholar]
  10. Dussault H. P. . ( 1955;). An improved technique for staining red halophilic bacteria. . J Bacteriol 70: 484–485.[PubMed]
    [Google Scholar]
  11. Fan H. , Su C. , Wang Y. , Yao J. , Zhao K. , Wang Y. , Wang G. . ( 2008;). Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. . J Appl Microbiol 105: 529–539. [CrossRef] [PubMed]
    [Google Scholar]
  12. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17: 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  13. Felsenstein J. . ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39: 783–791. [CrossRef]
    [Google Scholar]
  14. Feng G. D. , Yang S. Z. , Wang Y. H. , Zhang X. X. , Zhao G. Z. , Deng M. R. , Zhu H. H. . ( 2014;). Description of a Gram-negative bacterium, Sphingomonas guangdongensis sp. nov. . Int J Syst Evol Microbiol 64: 1697–1702. [CrossRef] [PubMed]
    [Google Scholar]
  15. Fitch W. M. . ( 1971;). Toward defining the course of evolution: minimum change for a tree topology. . Syst Zool 20: 406–416. [CrossRef]
    [Google Scholar]
  16. Kaur J. , Kaur J. , Niharika N. , Lal R. . ( 2012;). Sphingomonas laterariae sp. nov., isolated from a hexachlorocyclohexane-contaminated dump site. . Int J Syst Evol Microbiol 62: 2891–2896. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kawahara K. , Kuraishi H. , Zähringer U. . ( 1999;). Chemical structure and function of glycosphingolipids of Sphingomonas spp and their distribution among members of the alpha-4 subclass of Proteobacteria . . J Ind Microbiol Biotechnol 23: 408–413. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. et al. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62: 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kim S. J. , Moon J. Y. , Lim J. M. , Ahn J. H. , Weon H. Y. , Ahn T. Y. , Kwon S. W. . ( 2014;). Sphingomonas aerophila sp. nov. and Sphingomonas naasensis sp. nov., isolated from air and soil, respectively. . Int J Syst Evol Microbiol 64: 926–932. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kimura M. . ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. . J Mol Evol 16: 111–120. [CrossRef] [PubMed]
    [Google Scholar]
  21. Kroppenstedt R. M. . ( 1985;). Fatty acid and menaquinone analysis of actinomycetes and related organisms. . In Chemical Methods in Bacterial Systematics (Society for Applied Bacteriology Technical Series No. 20), pp. 173–199. Edited by Goodfellow M. , Minnikin D. E. . London:: Academic Press;.
    [Google Scholar]
  22. Lanyi B. . ( 1987;). Classical and rapid identification methods for medically important bacteria. . Methods Microbiol 19: 1–67.[CrossRef]
    [Google Scholar]
  23. Lee J. S. , Shin Y. K. , Yoon J. H. , Takeuchi M. , Pyun Y. R. , Park Y. H. . ( 2001;). Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov., and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. . Int J Syst Evol Microbiol 51: 1491–1498. [CrossRef] [PubMed]
    [Google Scholar]
  24. Lin S. Y. , Shen F. T. , Lai W. A. , Zhu Z. L. , Chen W. M. , Chou J. H. , Lin Z. Y. , Young C. C. . ( 2012;). Sphingomonas formosensis sp. nov., a polycyclic aromatic hydrocarbon-degrading bacterium isolated from agricultural soil. . Int J Syst Evol Microbiol 62: 1581–1586. [CrossRef] [PubMed]
    [Google Scholar]
  25. Maruyama T. , Park H. D. , Ozawa K. , Tanaka Y. , Sumino T. , Hamana K. , Hiraishi A. , Kato K. . ( 2006;). Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium. . Int J Syst Evol Microbiol 56: 85–89. [CrossRef] [PubMed]
    [Google Scholar]
  26. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Evol Microbiol 39: 159–167. [CrossRef]
    [Google Scholar]
  27. Minnikin D. E. , O'Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J. H. . ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2: 233–241. [CrossRef]
    [Google Scholar]
  28. Reichenbach H. . ( 1992;). The order Cytophagales . . In The Prokaryotes, , 2nd edn.,vol. 4 pp. 3631–3675. Edited by Balows A. , Trüper H. G. , Dworkin M. , Harder W. , Schleifer K. H. . New York:: Springer;.[CrossRef]
    [Google Scholar]
  29. Romanenko L. A. , Uchino M. , Frolova G. M. , Tanaka N. , Kalinovskaya N. L. , Latyshev N. , Mikhailov V. V. . ( 2007;). Sphingomonas molluscorum sp. nov., a novel marine isolate with antimicrobial activity. . J Microbiol Methods 57: 358–363. [CrossRef]
    [Google Scholar]
  30. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4: 406–425.[PubMed]
    [Google Scholar]
  31. Sasser M. . ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. . MIDI Technical Note 101. Newark, DE:: MIDI Inc;.
    [Google Scholar]
  32. Smibert R. M. , Krieg N. R. . ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  33. Son H. M. , Yang J. E. , Park Y. , Han C. K. , Kim S. G. , Kook M. , Yi T. H. . ( 2013;). Sphingomonas kyungheensis sp. nov., a bacterium with ginsenoside-converting activity isolated from soil of a ginseng field. . Int J Syst Evol Microbiol 63: 3848–3853. [CrossRef] [PubMed]
    [Google Scholar]
  34. Takeuchi M. , Hamana K. , Hiraishi A. . ( 2001;). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. . Int J Syst Evol Microbiol 51: 1405–1417. [CrossRef] [PubMed]
    [Google Scholar]
  35. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28: 2731–2739. [CrossRef] [PubMed]
    [Google Scholar]
  36. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25: 4876–4882. [CrossRef] [PubMed]
    [Google Scholar]
  37. Uchida H. , Hamana K. , Miyazaki M. , Yoshida T. , Nogi Y. . ( 2012;). Parasphingopyxis lamellibrachiae gen. nov., sp. nov., isolated from a marine annelid worm. . Int J Syst Evol Microbiol 62: 2224–2228. [CrossRef] [PubMed]
    [Google Scholar]
  38. Wei S. , Wang T. , Liu H. , Zhang C. , Guo J. , Wang Q. , Liang K. , Zhang Z. . ( 2015;). Sphingomonas hengshuiensis sp. nov., isolated from Hengshui Lake Wetland Reserve of China. . Int J Syst Evol Microbiol 65: 4644–4649.[CrossRef]
    [Google Scholar]
  39. Xu P. , Li W. J. , Tang S. K. , Zhang Y. Q. , Chen G. Z. , Chen H. H. , Xu L. H. , Jiang C. L. . ( 2005;). Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. . Int J Syst Evol Microbiol 55: 1149–1153. [CrossRef] [PubMed]
    [Google Scholar]
  40. Yabuuchi E. , Yano I. , Oyaizu H. , Hashimoto Y. , Ezaki T. , Yamamoto H. . ( 1990;). Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas . . Microbiol Immunol 34: 99–119. [CrossRef] [PubMed]
    [Google Scholar]
  41. Yabuuchi E. , Kosako Y. , Fujiwara N. , Naka T. , Matsunaga I. , Ogura H. , Kobayashi K. . ( 2002;). Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola. . Int J Syst Evol Microbiol 52: 1485–1496. [CrossRef] [PubMed]
    [Google Scholar]
  42. Yasir M. , Aslam Z. , Song G. C. , Jeon C. O. , Chung Y. R. . ( 2010;). Sphingosinicella vermicomposti sp. nov., isolated from vermicompost, and emended description of the genus Sphingosinicella . . Int J Syst Evol Microbiol 60: 580–584. [CrossRef] [PubMed]
    [Google Scholar]
  43. Zhang Y. Q. , Chen Y. G. , Li W. J. , Tian X. P. , Xu L. H. , Jiang C. L. . ( 2005;). Sphingomonas yunnanensis sp. nov., a novel gram-negative bacterium from a contaminated plate. . Int J Syst Evol Microbiol 55: 2361–2364. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001064
Loading
/content/journal/ijsem/10.1099/ijsem.0.001064
Loading

Data & Media loading...

Supplements

Supplementary File 1



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error