1887

Abstract

Two closely related thermophilic bacterial strains, designated YIM 78023 and YIM 78058, were isolated from samples collected from two alkaline hot springs in Tengchong county, Yunnan province, south-west China. The novel isolates were Gram-stain-negative, non-motile, aerobic ovoid- to coccoid-shaped and non-spore-forming. Strain YIM 78023 grew at 20–60 ºC and pH 6.0–9.0 with optimal growth observed at 40–50 ºC and pH 8.0, while strain YIM 78058 grew at 25–60 ºC and pH 6.0–10.0 with optimal growth at 45–50 ºC and pH 8.0. Phylogenetic analysis based on 16S rRNA gene sequences affiliated these two isolates within the family with high sequence similarities to members of the genera and (all sequence similarities <94.5 %). In addition to the above two genera, these strains also clustered with the genera and (having sequence similarities <93.3 %) in the phylogenetic tree, but with a distinct lineage within the family . The major ubiquinone was Q-10 and the major fatty acids observed were C 7, summed feature 4 and C. The genomic DNA G+C contents observed for strains YIM 78023 and YIM 78058 were 74.3 and 74.0 mol%, respectively. Morphological, phylogenetic and chemotaxonomic results suggest that strains YIM 78023 and YIM 78058 are representatives of a novel species of a new genus within the family , for which the name gen. nov., sp. nov. is proposed. The type strain of is YIM 78023 (=JCM 19657=KACC 17825).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001029
2016-06-10
2021-07-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/6/2319.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001029&mimeType=html&fmt=ahah

References

  1. Adachi O., Fujii Y., Ano Y., Moonmangmee D., Toyama H., Shinagawa E., Theeragool G., Lotong N., Matsushita K. 2001; Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation. Biosci Biotechnol Biochem 65:115–125 [View Article][PubMed]
    [Google Scholar]
  2. Alarico S., Rainey F. A., Empadinhas N., Schumann P., Nobre M. F., da Costa M. S. 2002; Rubritepida flocculans gen. nov., sp. nov., a new slightly thermophilic member of the alpha-1 subclass of the Proteobacteria . Syst Appl Microbiol 25:198–206 [View Article][PubMed]
    [Google Scholar]
  3. Albuquerque L., Rainey F. A., Nobre M. F., da Costa M. S. 2008; Elioraea tepidiphila gen. nov., sp. nov., a slightly thermophilic member of the Alphaproteobacteria. Int J Syst Evol Microbiol 58:773–778 [View Article][PubMed]
    [Google Scholar]
  4. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [View Article][PubMed]
    [Google Scholar]
  5. Boldareva E. N., Turova T. P., Kolganova T. V., Moskalenko A. A., Makhneva Z. K., Gorlenko V. M. 2009; Roseococcus suduntuyensis sp. nov., a new aerobic bacteriochlorophyll a-containing bacterium isolated from a low-mineralized soda lake of Eastern Siberia. Microbiology 78:92–101 [View Article][PubMed]
    [Google Scholar]
  6. Buck J. D. 1982; Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microb 44:992–993
    [Google Scholar]
  7. Cancalon P. F., Parish M. E. 1995; Changes in the chemical composition of orange juice during growth of Saccharomyces cerevisiae and Gluconobacter oxydans . Food Microbiol 12:117–124 [View Article]
    [Google Scholar]
  8. Cavalcante V. A., Dobereiner J. 1988; A new acid-tolerant nitrogen-fixing bacterium associated with sugarcane. Plant Soil 108:23–31 [View Article]
    [Google Scholar]
  9. Christensen H., Angen O., Mutters R., Olsen J. E., Bisgaard M. 2000; DNA-DNA hybridization determined in micro-wells using covalent attachment of DNA. Int J Syst Evol Microbiol 50:1095–1102 [View Article][PubMed]
    [Google Scholar]
  10. Cleenwerck I., Vandemeulebroecke K., Janssens D., Swings J. 2002; Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 52:1551–1558 [View Article][PubMed]
    [Google Scholar]
  11. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230 [View Article][PubMed]
    [Google Scholar]
  12. Collins M. D., Jones D. 1980; Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 48:459–470 [CrossRef]
    [Google Scholar]
  13. da Costa M. S., Rainey F. 2001; Family II. Acetobacteraceae fam. Nov. In Bergey’s Manual of Systematic Bacteriology, 9nd edn. vol. 2 pp. 41–95 Edited by Gillis, De Ley. New York: Springer;
    [Google Scholar]
  14. da Costa M. S., Rainey F. A., Nobre M. F. 2006; The family Acetobacteraceae . In The Prokaryotes, 3rd edn. vol. 5 pp. 163–200 Edited by Kersters K., Lisdiyanti P., Komagata K. New York: Springer;
    [Google Scholar]
  15. Dong L., Ming H., Yin Y. R., Duan Y. Y., Zhou E. M., Nie G. X., Feng H. G., Liu L., Li W. J. 2014; Roseomonas alkaliterrae sp. nov., isolated from an alkali geothermal soil sample in Tengchong, Yunnan, South-West China. Antonie Van Leeuwenhoek 105:899–905 [View Article][PubMed]
    [Google Scholar]
  16. Du Toit W. J., Lambrechts M. G. 2002; The enumeration and identification of acetic acid bacteria from South African red wine fermentations. Int J Food Microbiol 74:57–64 [View Article][PubMed]
    [Google Scholar]
  17. Eder W., Peplies J., Wanner G., Frühling A., Verbarg S. 2015; Hydrobacter penzbergensis gen. nov., sp. nov., isolated from purified water. Int J Syst Evol Microbiol 65:920–926 [View Article][PubMed]
    [Google Scholar]
  18. Entani E., Ohmori S., Masai H, Suzuki K. I. 1985; Acetobacter polyoxogenes sp. nov., a new species of an acetic acid bacterium useful for producing vinegar with high acidity. J Gen Appl Microbiol 31:475–490 [View Article]
    [Google Scholar]
  19. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article][PubMed]
    [Google Scholar]
  20. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  21. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  22. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  23. Gillis M., De Ley J. 1980; Intra- and intergeneric similarities of the ribosomal ribonucleic acid cistrons of Acetobacter and Gluconobacter. Int J Syst Bacteriol 30:7–27 [CrossRef]
    [Google Scholar]
  24. Gonzalez C., Gutierrez C., Ramirez C. 1978; Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can J Microbiol 24:710–715 [View Article][PubMed]
    [Google Scholar]
  25. Gosselé F., Swings J., Mossel D. A., De Ley J. 1984; Identification of Acetobacter strains isolated from spoiled lactic acid fermented meat food for pets. Antonie Van Leeuwenhoek 50:269–274 [View Article][PubMed]
    [Google Scholar]
  26. Greenberg D. E., Porcella S. F., Stock F., Wong A., Conville P. S., Murray P. R., Holland S. M., Zelazny A. M. 2006; Granulibacter bethesdensis gen. nov., sp. nov., a distinctive pathogenic acetic acid bacterium in the family Acetobacteraceae . Int J Syst Evol Microbiol 56:2609–2616 [View Article][PubMed]
    [Google Scholar]
  27. Guindon S., Gascuel O. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704 [View Article][PubMed]
    [Google Scholar]
  28. Han X. Y., Pham A. S., Tarrand J. J., Rolston K. V., Helsel L. O., Levett P. N. 2003; Bacteriologic characterization of 36 strains of Roseomonas species and proposal of Roseomonas mucosa sp nov and Roseomonas gilardii subsp rosea subsp nov. Am J Clin Pathol 120:256–264 [View Article][PubMed]
    [Google Scholar]
  29. Hu H. Y., Lim B. R., Goto N., Fujie K. 2001; Analytical precision and repeatability of respiratory quinones for quantitative study of microbial community structure in environmental samples. J Microbiol Methods 47:17–24 [View Article][PubMed]
    [Google Scholar]
  30. Jin L., Lee H. G., No K. J., Ko S. R., Kim H. S., Ahn C. Y., Oh H. M. 2013; Belnapia soli sp. nov., a proteobacterium isolated from grass soil. Int J Syst Evol Microbiol 63:1955–1959 [View Article][PubMed]
    [Google Scholar]
  31. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., Yi H., Won S., Chun J. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  32. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  33. Kimura M. 1984 The Neutral Theory of Molecular Evolution Cambridge University Press;
    [Google Scholar]
  34. Kishimoto N., Kosako Y., Wakao N., Tano T., Hiraishi A. 1995; Transfer of Acidiphilium facilis Acidiphilium aminolytica to the genus Acidocella gen. nov., and emendation of the genus Acidiphilium . Syst Appl Microbiol 18:85–91 [View Article]
    [Google Scholar]
  35. Kovacs N. 1956; Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178:703 [CrossRef]
    [Google Scholar]
  36. Leifson E. 1960 Atlas of Bacterial Flagellation London: Academic Press; [CrossRef]
    [Google Scholar]
  37. Li W. J., Xu P., Schumann P., Zhang Y. Q., Pukall R., Xu L. H., Stackebrandt E., Jiang C. L. 2007; Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia . Int J Syst Evol Microbiol 57:1424–1428 [View Article][PubMed]
    [Google Scholar]
  38. Lisdiyanti P., Kawasaki H., Widyastuti Y., Saono S., Seki T., Yamada Y., Uchimura T., Komagata K. 2002; Kozakia baliensis gen. nov., sp. nov., a novel acetic acid bacterium in the alpha-proteobacteria. Int J Syst Evol Microbiol 52:813–818 [View Article][PubMed]
    [Google Scholar]
  39. MacFaddin J. F. 1976; Biochemical Tests for Identification of Medical Bacteria. Williams & Wilkins Co
    [Google Scholar]
  40. Margesin R., Zhang D. C. 2013; Humitalea rosea gen. nov., sp. nov., an aerobic bacteriochlorophyll-containing bacterium of the family Acetobacteraceae isolated from soil. Int J Syst Evol Microbiol 63:1411–1416 [View Article][PubMed]
    [Google Scholar]
  41. Mesbah, M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  42. Ming H., Yin Y. R., Li S., Nie G. X., Yu T. T., Zhou E. M., Liu L., Dong L., Li W. J. 2014; Thermus caliditerrae sp. nov., a novel thermophilic species isolated from a geothermal area. Int J Syst Evol Microbiol 64:650–656 [View Article][PubMed]
    [Google Scholar]
  43. Minnikin D., Collins M., Goodfellow M. 1979; Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47:87–95 [View Article]
    [Google Scholar]
  44. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [View Article]
    [Google Scholar]
  45. Moore J. E., Xu J., Heaney N., Millar B. C. 2002; Spoilage of fruit-flavoured bottled water by Gluconacetobacter sacchari . Food Microbiol 19:399–401 [View Article]
    [Google Scholar]
  46. Nanda K., Taniguchi M., Ujike S., Ishihara N., Mori H., Ono H., Murooka Y. 2001; Characterization of acetic acid bacteria in traditional acetic acid fermentation of rice vinegar (komesu) and unpolished rice vinegar (kurosu) produced in Japan. Appl Environ Microbiol 67:986–990 [View Article][PubMed]
    [Google Scholar]
  47. Nie G. X., Ming H., Li S., Zhou E. M., Cheng J., Tang X., Feng H. G., Tang S. K., Li W. J. 2012a; Amycolatopsis dongchuanensis sp. nov., an actinobacterium isolated from soil. Int J Syst Evol Microbiol 62:2650–2656 [CrossRef]
    [Google Scholar]
  48. Nie G. X., Ming H., Li S., Zhou E. M., Cheng J., Yu T. T., Zhang J., Feng H. G., Tang S. K., other authors. 2012b; Geodermatophilus nigrescens sp. nov., isolated from a dry-hot valley. Antonie Van Leeuwenhoek 101:811–817 [CrossRef]
    [Google Scholar]
  49. Qu J. H., Qu J. Y., He X. B., Li H. F., Luo Y., Yin Y. L., Zhai H. C., Cai J. P. 2013; Sediminicoccus rosea gen. nov. sp. nov., isolated from the sediment of a eutrophic lake. J Gen Appl Microbiol 59:463–468 [CrossRef]
    [Google Scholar]
  50. Ramírez-Bahena M. H., Tejedor C., Martín I., Velázquez E., Peix A. 2013; Endobacter medicaginis gen. nov., sp. nov., isolated from alfalfa nodules in an acidic soil. Int J Syst Evol Microbiol 63:1760–1765 [View Article][PubMed]
    [Google Scholar]
  51. Reddy G. S., Nagy M., Garcia-Pichel F. 2006; Belnapia moabensis gen. nov., sp. nov., an alphaproteobacterium from biological soil crusts in the Colorado plateau, USA. Int J Syst Evol Microbiol 56:51–58 [View Article][PubMed]
    [Google Scholar]
  52. Rihs J. D., Brenner D. J., Weaver R. E., Steigerwalt A. G., Hollis D. G., Yu V. L. 1993; Roseomonas, a new genus associated with bacteremia and other human infections. J Clin Microbiol 31:3275–3283[PubMed]
    [Google Scholar]
  53. Saitoh S., Nishimura Y. 1996; Taxonomic characterization of novel aerobic bacteriochlorophyll-containing bacteria isolated from soil. J Gen Appl Microbiol 42:121–140 [CrossRef]
    [Google Scholar]
  54. Saitoh S., Suzuki T., Nishimura Y. 1998; Proposal of Craurococcus roseus gen. nov., sp. nov. and Paracraurococcus ruber gen. nov., sp. nov., novel aerobic bacteriochlorophyll a-containing bacteria from soil. Int J Syst Evol Microbiol 48:1043–1047
    [Google Scholar]
  55. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  56. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:16
    [Google Scholar]
  57. Shirling E. B., Gottlieb D. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340 [View Article]
    [Google Scholar]
  58. Smibert R., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  59. Takemura H., Kondo K., Horinouchi S., Beppu T. 1993; Induction by ethanol of alcohol dehydrogenase activity in Acetobacter pasteurianus . J Bacteriol 175:6857–6866[PubMed]
    [Google Scholar]
  60. Tamaoka J., Katayama-Fujimura Y., Kuraishi H. 1983; Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54:31–36 [View Article]
    [Google Scholar]
  61. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  62. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  63. Yukphan P., Malimas T., Muramatsu Y., Potacharoen W., Tanasupawat S., Nakagawa Y., Tanticharoen M., Yamada Y. 2011; Neokomagataea gen. nov., with descriptions of Neokomagataea thailandica sp. nov. and Neokomagataea tanensis sp. nov., osmotolerant acetic acid bacteria of the α- Proteobacteria. Biosci Biotech Bioch 75:419–426 [View Article]
    [Google Scholar]
  64. Yurkov V., Stackebrandt E., Holmes A., Fuerst J. A., Hugenholtz P., Golecki J., Gad'on N., Gorlenko V. M., Kompantseva E. I., Drews G. 1994; Phylogenetic positions of novel aerobic, bacteriochlorophyll a-containing bacteria and description of Roseococcus thiosulfatophilus gen. nov., sp. nov., Erythromicrobium ramosum gen. nov., sp. nov., and Erythrobacter litoralis sp. nov. Int J Syst Evol Microbiol 44:427–434
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001029
Loading
/content/journal/ijsem/10.1099/ijsem.0.001029
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error