1887

Abstract

A Gram-stain-positive, strictly aerobic, motile, spore-forming, rod-shaped bacterial strain, CAU 11108, was isolated from soil in Danghangpo, Republic of Korea, and its taxonomic position was investigated using a polyphasic approach. The bacterium grew optimally at 37 °C, at pH 8, and in the presence of 1 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequence similarity revealed that strain CAU 11108 formed a distinct lineage within the genus and was most closely related to U13 (98.2 %). The strain contained menaquinone-7 (MK-7) as the major respiratory quinone and iso-C and anteiso-C as the major fatty acids. The DNA G+C content was 54.6 mol%. On the basis of phenotypic differentiation, phylogenetic and chemotaxonomic data, strain CAU 11108represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CAU 11108(=KCTC 33141=CECT 8918).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001009
2016-06-10
2020-01-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/6/2192.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001009&mimeType=html&fmt=ahah

References

  1. Baek S. H., Cui Y., Kim S. C., Cui C. H., Yin C., Lee S. T., Im W. T.. 2011; Tumebacillus ginsengisoli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol61:1715–1719 [CrossRef][PubMed]
    [Google Scholar]
  2. Benson D. A., Cavanaugh M., Clark K., Karsch-Mizrachi I., Lipman D. J., Ostell J., Sayers E. W.. 2013; Genbank. Nucleic Acids Res41:D36–D42 [CrossRef][PubMed]
    [Google Scholar]
  3. Bowman J. P.. 2000; Description of cellulophaga algicola sp. nov., isolated from the surfaces of antarctic algae, and reclassification of cytophaga uliginosa (zobell and upham 1944) reichenbach 1989 as cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol50:1861–1868 [CrossRef][PubMed]
    [Google Scholar]
  4. Cappuccino J. G., Sherman N.. 2002; Microbiology: a Laboratory Manual. Menlo Park, 6th edn. CA: Benjamin/Cummings;
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E.. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol39:224–229 [CrossRef]
    [Google Scholar]
  6. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef]
    [Google Scholar]
  7. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  8. Felsenstein J.. 1989; PHYLIP – phylogeny inference package (version 3.2). Cladistics5:164–166
    [Google Scholar]
  9. Fitch W. M., Margoliash E.. 1967; Construction of phylogenetic trees. Science155:279–284 [CrossRef][PubMed]
    [Google Scholar]
  10. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  11. Goris J., Suzuki Ken-ichiro., Vos P. D., Nakase T., Kersters K.. 1998; Evaluation of a microplate DNA - DNA hybridization method compared with the initial renaturation method. Can J Microbiol44:1148–1153 [CrossRef]
    [Google Scholar]
  12. Jukes T. H., Cantor C. R.. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism , pp.21–132 Edited by Munro H. H.. New York: Academic Press;[CrossRef]
    [Google Scholar]
  13. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H. et al. 2012; Introducing eztaxon-e: a prokaryotic 16S rrna gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  14. Komagata K., Suzuki K.. 1988; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol19:161–207 [CrossRef]
    [Google Scholar]
  15. Lane D. J.. 1991; 16S/23S RNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics , pp.115–175 Edited by Stackebrandt E., Goodfellow M.. London: John Wiley & Sons Ltd;
    [Google Scholar]
  16. Lanyi B.. 1988; Classical and rapid identification methods for medically important bacteria. Methods Microbiol19:1–67[CrossRef]
    [Google Scholar]
  17. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A.. 2007; Clustal W and Clustal X version 2.0. Bioinformatics23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  18. Marmur J.. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol3:208–218[CrossRef]
    [Google Scholar]
  19. Minnikin D. E., Hutchinson I. G., Caldicott A. B., Goodfellow M.. 1980; Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. J Chromatogr A188:221–233 [CrossRef]
    [Google Scholar]
  20. Moore W. E. C., Stackebrandt E., Kandler O., Colwell R. R., Krichevsky M. I., Truper H. G., Murray R. G. E., Wayne L. G., Grimont P. A. D. et al. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Evol Microbiol37:463–464 [CrossRef]
    [Google Scholar]
  21. Nam S. W., Kim W., Chun J., Goodfellow M.. 2004; Tsukamurella pseudospumae sp. nov., a novel actinomycete isolated from activated sludge foam. Int J Syst Evol Microbiol54:1209–1212 [CrossRef][PubMed]
    [Google Scholar]
  22. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  23. Schleifer K. H., Kandler O.. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev36:407–477[PubMed]
    [Google Scholar]
  24. Smibert R. M., Krieg N. R.. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp.607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  25. Steven B., Chen M. Q., Greer C. W., Whyte L. G., Niederberger T. D.. 2008; Tumebacillus permanentifrigoris gen. nov., sp. nov., an aerobic, spore-forming bacterium isolated from canadian high arctic permafrost. Int J Syst Evol Microbiol58:1497–1501 [CrossRef][PubMed]
    [Google Scholar]
  26. Tamaoka J., Komagata K.. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett25:125–128 [CrossRef]
    [Google Scholar]
  27. Wang Q., Xie N., Qin Y., Shen N., Zhu J., Mi H., Huang R.. 2013; Tumebacillus flagellatus sp. nov., an α-amylase/pullulanase-producing bacterium isolated from cassava wastewater. Int J Syst Evol Microbiol63:3138–3142 [CrossRef][PubMed]
    [Google Scholar]
  28. Wu Y. F., Zhang B., Xing P., Wu Q. L., Liu S. J.. 2015; Tumebacillus algifaecis sp. nov., isolated from decomposing algal scum. Int J Syst Evol Microbiol65:2194–2198 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001009
Loading
/content/journal/ijsem/10.1099/ijsem.0.001009
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error