1887

Abstract

A novel Gram-stain-negative, rod-shaped (1.0–1.2×2.0–8.0 µm), non-motile without flagella strain, designated HSF7, was isolated from deep seawater. Strain HSF7 was able to grow at 20–40 °C (optimum 35 °C), pH 5.5–9.0 (optimum pH 6.5) and 0–10 % (w/v) NaCl (optimum 2 %). The G+C content of the genomic DNA was 69 mol%. Bacteriochlorophyll and poly--hydroxybutyrate (PHB) granules were not found. The major fatty acids were Cω7 (69.3 %), C (9.1 %) and C cyclo ω8 (6.6 %). The polar lipids were phosphatidylglycerol, three unknown aminophospholipids, an unknown phospholipid, an unknown aminolipid and two unknown lipids. The only isoprenoid quinone was Q-10. 16S rRNA gene sequence analysis revealed that strain HSF7 was most closely related to DSM 19539, DSM 18839, DSM 18348 and MCCC 1A02083with pairwise sequence similarities of 95.56 %, 95.21 %, 93.64 % and 92.65 %, respectively. On the basis of genotypic, phenotypic, phylogenetic and chemotaxonomic characteristics, strain HSF7 represents a novel species of the genus , or which the name sp. nov. is proposed. The type strain is HSF7(=KCTC 42651=MCCC 1K01158).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.001008
2016-06-10
2020-08-12
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/6/2186.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.001008&mimeType=html&fmt=ahah

References

  1. Claus D.. 1992; A standardized Gram staining procedure. World J Microb Biot8:451–452 [CrossRef]
    [Google Scholar]
  2. Euzéby J. P.. 1997; List of bacterial names with standing in nomenclature: A folder available on the internet. Int J Syst Bacteriol47:590–592 [CrossRef][PubMed]
    [Google Scholar]
  3. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  4. Fitch W. M.. 1987; Citation Classic - Toward defining the course of evolution: minimum change for a specific tree topology. CC/Agri Biol Environ Sci14
    [Google Scholar]
  5. Kovacs N.. 1956; Identification of pseudomonas pyocyanea by the oxidase reaction. Nature178:703 [CrossRef]
    [Google Scholar]
  6. Kumar P. A., Srinivas T. N., Manasa P., Madhu S., Shivaji S.. 2012; Lutibaculum baratangense gen. nov., sp. nov., a proteobacterium isolated from a mud volcano. Int J Syst Evol Microbiol62:2025–2031 [CrossRef][PubMed]
    [Google Scholar]
  7. Kuykendall L. D., Roy M. A., O'neill J. J., Devine T. E.. 1998; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol38:358–361 [CrossRef]
    [Google Scholar]
  8. Lai Q., Yuan J., Wu C., Shao Z.. 2009a; Oceanibaculum indicum gen. nov., sp. nov., isolated from deep seawater of the Indian Ocean. Int J Syst Evol Microbiol59:1733–1737 [CrossRef]
    [Google Scholar]
  9. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167[CrossRef]
    [Google Scholar]
  10. Mesquita D. P., Amaral A. L., Leal C., Oehmen A., Reis M. A., Ferreira E. C.. 2015; Polyhydroxyalkanoate granules quantification in mixed microbial cultures using image analysis: Sudan black B versus nile blue A staining. Anal Chim Acta865:8–15 [CrossRef][PubMed]
    [Google Scholar]
  11. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  12. Pan J., Sun C., Zhang X. Q., Huo Y. Y., Zhu X. F., Wu M.. 2014; Paracoccus sediminis sp. nov., isolated from pacific ocean marine sediment. Int J Syst Evol Microbiol64:2512–2516 [CrossRef][PubMed]
    [Google Scholar]
  13. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  14. Sorokina A. Y., Chernousova E. Y., Dubinina G. A.. 2012; Ferrovibrio denitrificans gen. nov., sp. nov., a novel neutrophilic facultative anaerobic Fe(ii)-oxidizing bacterium. FEMS Microbiol Lett335:19–25 [CrossRef][PubMed]
    [Google Scholar]
  15. Sun C., Pan J., Zhang X. Q., Su Y., Wu M.. 2015; Pseudoroseovarius zhejiangensis gen. nov., sp. nov., a novel alpha-proteobacterium isolated from the chemical wastewater, and reclassification of Roseovarius crassostreae as Pseudoroseovarius crassostreae comb. nov., Roseovarius sediminilitoris as Pseudoroseovarius sediminilitoris comb. nov. and Roseovarius halocynthiae as Pseudoroseovarius halocynthiae comb. nov. Antonie van Leeuwenhoek108:291–299 [CrossRef][PubMed]
    [Google Scholar]
  16. Suzuki M., Nakagawa Y., Harayama S., Yamamoto S.. 2001; Phylogenetic analysis and taxonomic study of marine cytophaga-like bacteria: proposal for Tenacibaculum gen. nov. with Tenacibaculum maritimum comb. nov. and Tenacibaculum ovolyticum comb. nov., and description of Tenacibaculum mesophilum sp. nov. and Tenacibaculum amylolyticum sp. nov. Int J Syst Evol Microbiol51:1639–1652 [CrossRef][PubMed]
    [Google Scholar]
  17. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  18. Urios L., Michotey V., Intertaglia L., Lesongeur F., Lebaron P.. 2008; Nisaea denitrificans gen. nov., sp. nov. and Nisaea nitritireducens sp. nov., two novel members of the class Alphaproteobacteria from the Mediterranean Sea. Int J Syst Evol Microbiol58:2336–2341 [CrossRef][PubMed]
    [Google Scholar]
  19. Urios L., Michotey V., Intertaglia L., Lesongeur F., Lebaron P.. 2010; Thalassobaculum salexigens sp. nov., a new member of the family Rhodospirillaceae from the NW Mediterranean Sea, and emended description of the genus Thalassobaculum . Int J Syst Evol Microbiol60:209–213 [CrossRef][PubMed]
    [Google Scholar]
  20. Williams S. T., Davies F. L.. 1965; Use of antibiotics for selective isolation and enumeration of actinomycetes in soil. J Gen Microbiol38:251–261[CrossRef]
    [Google Scholar]
  21. Wu X. Y., Zheng G., Zhang W. W., Xu X. W., Wu M., Zhu X. F.. 2010; Amphibacillus jilinensis sp. nov., a facultatively anaerobic, alkaliphilic bacillus from a soda lake. Int J Syst Evol Microbiol60:2540–2543 [CrossRef][PubMed]
    [Google Scholar]
  22. Xu X. W., Huo Y. Y., Wang C. S., Oren A., Cui H. L., Vedler E., Wu M.. 2011; Pelagibacterium halotolerans gen. nov., sp. nov. and Pelagibacterium luteolum sp. nov., novel members of the family Hyphomicrobiaceae . Int J Syst Evol Microbiol61:1817–1822 [CrossRef][PubMed]
    [Google Scholar]
  23. Zhang G. I., Hwang C. Y., Cho B. C.. 2008; Thalassobaculum litoreum gen nov., sp. nov., a member of the family Rhodospirillaceae isolated from coastal seawater. Int J Syst Evol Microbiol58:479–485 [CrossRef][PubMed]
    [Google Scholar]
  24. Zhang D. C., Liu H. C., Zhou Y. G., Schinner F., Margesin R.. 2011; Tistrella bauzanensis sp. nov., isolated from soil. Int J Syst Evol Microbiol61:2227–2230 [CrossRef][PubMed]
    [Google Scholar]
  25. Zhang W. Y., Huo Y. Y., Zhang X. Q., Zhu X. F., Wu M.. 2013; Halolamina salifodinae sp. nov. and Halolamina salina sp. nov., two extremely halophilic archaea isolated from a salt mine. Int J Syst Evol Microbiol63:4380–4385[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.001008
Loading
/content/journal/ijsem/10.1099/ijsem.0.001008
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error