1887

Abstract

Two slow-growing, Gram-negative, non-motile, non-spore-forming, coccoid bacteria (strains F60 and F965), isolated in Austria from mandibular lymph nodes of two red foxes (), were subjected to a polyphasic taxonomic analysis. In a recent study, both isolates were assigned to the genus but could not be attributed to any of the existing species. Hence, we have analysed both strains in further detail to determine their exact taxonomic position and genetic relatedness to other members of the genus . The genome sizes of F60 and F965 were 3 236 779 and 3 237 765 bp, respectively. Each genome consisted of two chromosomes, with a DNA G+C content of 57.2 %. A genome-to-genome distance of >80 %, an average nucleotide identity (ANI) of 97 % and an average amino acid identity (AAI) of 98 % compared with the type species confirmed affiliation to the genus. Remarkably, 5 % of the entire genetic information of both strains was of non- origin, including as-yet uncharacterized bacteriophages and insertion sequences as well as ABC transporters and other genes of metabolic function from various soil-living bacteria. Core-genome-based phylogenetic reconstructions placed the novel species well separated from all hitherto-described species of the genus , forming a long-branched sister clade to the classical species of . In summary, based on phenotypic and molecular data, we conclude that strains F60 and F965 are members of a novel species of the genus , for which the name sp. nov. is proposed, with the type strain F60 ( = BCCN 09-2 = DSM 101715).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000998
2016-05-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/5/2090.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000998&mimeType=html&fmt=ahah

References

  1. Al Dahouk S., Scholz H. C., Tomaso H., Bahn P., Göllner C., Karges W., Appel B., Hensel A., Neubauer H., Nöckler K.. ( 2010;). Differential phenotyping of Brucella species using a newly developed semi-automated metabolic system. BMC Microbiol 10: 269 [CrossRef] [PubMed].
    [Google Scholar]
  2. Alton G. G., Jones L. M., Pietz D. E.. ( 1975;). Laboratory Techniques in Brucellosis (World Health Organization Monograph Series, no. 55) Geneva: World Health Organization;.
    [Google Scholar]
  3. Blom J., Albaum S. P., Doppmeier D., Pühler A., Vorhölter F. J., Zakrzewski M., Goesmann A.. ( 2009;). edgar: a software framework for the comparative analysis of prokaryotic genomes. BMC Bioinformatics 10: 154 [CrossRef] [PubMed].
    [Google Scholar]
  4. Corbel M. J.. ( 1987;). Brucella phages: advances in the development of a reliable phage typing system for smooth and non-smooth Brucella isolates. Ann Inst Pasteur Microbiol 138: 70–75 [CrossRef] [PubMed].
    [Google Scholar]
  5. Corbel M. J., Brinley Morgan W. J.. ( 1975;). Proposal for minimal standards for descriptions of new species and biotypes of the genus Brucella. Int J Syst Bacteriol 25: 83–89 [CrossRef].
    [Google Scholar]
  6. De B. K., Stauffer L., Koylass M. S., Sharp S. E., Gee J. E., Helsel L. O., Steigerwalt A. G., Vega R., Clark T. A., other authors. ( 2008;). Novel Brucella strain (BO1) associated with a prosthetic breast implant infection. J Clin Microbiol 46: 43–49 [CrossRef] [PubMed].
    [Google Scholar]
  7. Edgar R. C.. ( 2004;). muscle: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32: 1792–1797 [CrossRef] [PubMed].
    [Google Scholar]
  8. Eisenberg T., Hamann H. P., Kaim U., Schlez K., Seeger H., Schauerte N., Melzer F., Tomaso H., Scholz H. C., other authors. ( 2012;). Isolation of potentially novel Brucella spp. from frogs. Appl Environ Microbiol 78: 3753–3755 [CrossRef] [PubMed].
    [Google Scholar]
  9. Fischer D., Lorenz N., Heuser W., Kämpfer P., Scholz H. C., Lierz M.. ( 2012;). Abscesses associated with a Brucella inopinata-like bacterium in a big-eyed tree frog (Leptopelis vermiculatus). J Zoo Wildl Med 43: 625–628 [CrossRef] [PubMed].
    [Google Scholar]
  10. Hofer E., Revilla-Fernández S., Al Dahouk S., Riehm J. M., Nöckler K., Zygmunt M. S., Cloeckaert A., Tomaso H., Scholz H. C.. ( 2012;). A potential novel Brucella species isolated from mandibular lymph nodes of red foxes in Austria. Vet Microbiol 155: 93–99 [CrossRef] [PubMed].
    [Google Scholar]
  11. Hubálek Z., Scholz H. C., Sedláček I., Melzer F., Sanogo Y. O., Nesvadbová J.. ( 2007;). Brucellosis of the common vole (Microtus arvalis). Vector Borne Zoonotic Dis 7: 679–688 [CrossRef] [PubMed].
    [Google Scholar]
  12. Osterman B., Moriyón I.. ( 2006;). International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of Brucella. Minutes of the meeting, 17 September 2003, Pamplona, Spain. Int J Syst Evol Microbiol 56: 1173–1175 [CrossRef].
    [Google Scholar]
  13. Sambrook J., Russell D.. ( 2001;). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  14. Scholz H. C., Vergnaud G.. ( 2013;). Molecular characterisation of Brucella species. Rev Sci Tech 32: 149–162 [PubMed].
    [Google Scholar]
  15. Scholz H. C., Hubálek Z., Sedláček I., Vergnaud G., Tomaso H., Al Dahouk S., Melzer F., Kämpfer P., Neubauer H., other authors. ( 2008a;). Brucella microti sp. nov., isolated from the common vole Microtus arvalis. Int J Syst Evol Microbiol 58: 375–382 [CrossRef] [PubMed].
    [Google Scholar]
  16. Scholz H. C., Hubalek Z., Nesvadbova J., Tomaso H., Vergnaud G., Le Flèche P., Whatmore A. M., Al Dahouk S., Krüger M., other authors. ( 2008b;). Isolation of Brucella microti from soil. Emerg Infect Dis 14: 1316–1317 [CrossRef] [PubMed].
    [Google Scholar]
  17. Scholz H. C., Hofer E., Vergnaud G., Le Fleche P., Whatmore A. M., Al Dahouk S., Pfeffer M., Krüger M., Cloeckaert A., Tomaso H.. ( 2009;). Isolation of Brucella microti from mandibular lymph nodes of red foxes, Vulpes vulpes, in lower Austria. Vector Borne Zoonotic Dis 9: 153–156 [CrossRef] [PubMed].
    [Google Scholar]
  18. Scholz H. C., Nöckler K., Göllner C., Bahn P., Vergnaud G., Tomaso H., Al Dahouk S., Kämpfer P., Cloeckaert A., other authors. ( 2010;). Brucella inopinata sp. nov., isolated from a breast implant infection. Int J Syst Evol Microbiol 60: 801–808 [CrossRef] [PubMed].
    [Google Scholar]
  19. Tiller R. V., Gee J. E., Frace M. A., Taylor T. K., Setubal J. C., Hoffmaster A. R., De B. K.. ( 2010;). Characterization of novel Brucella strains originating from wild native rodent species in North Queensland, Australia. Appl Environ Microbiol 76: 5837–5845 [CrossRef] [PubMed].
    [Google Scholar]
  20. Wattam A. R., Williams K. P., Snyder E. E., Almeida N. F. Jr, Shukla M., Dickerman A. W., Crasta O. R., Kenyon R., Lu J., other authors. ( 2009;). Analysis of ten Brucella genomes reveals evidence for horizontal gene transfer despite a preferred intracellular lifestyle. J Bacteriol 191: 3569–3579 [CrossRef] [PubMed].
    [Google Scholar]
  21. Whatmore A. M., Davison N., Cloeckaert A., Al Dahouk S., Zygmunt M. S., Brew S. D., Perrett L. L., Koylass M. S., Vergnaud G., other authors. ( 2014;). Brucella papionis sp. nov., isolated from baboons (Papio spp.). Int J Syst Evol Microbiol 64: 4120–4128 [CrossRef] [PubMed].
    [Google Scholar]
  22. Whatmore A. M., Dale E. J., Stubberfield E., Muchowski J., Koylass M., Dawson C., Gopaul K. K., Perrett L. L., Jones M., Lawrie A.. ( 2015;). Isolation of Brucella from a White's tree frog (Litoria caerulea). JMM Case Rep 2015: 2 [CrossRef].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000998
Loading
/content/journal/ijsem/10.1099/ijsem.0.000998
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error