1887

Abstract

A novel chemo-organoheterotroph bacterium, strain CB-286315, was isolated from a Mediterranean forest soil sampled at the Sierra de Tejeda, Almijara and Alhama Natural Park, Spain, by using the diffusion sandwich system, a device with 384 miniature diffusion chambers. 16S rRNA gene sequence analyses identified the isolate as a member of the under-represented phylum , where ‘’ KBS708, T-27 and AP64 were the closest relatives, with respective similarities of 84.4, 83.6 and 83.3 %. Strain CB-286315 was characterized as a Gram-negative, non-motile, short to long rod-shaped bacterium. Occasionally, some cells attained an unusual length, up to 35–40 μm. The strain showed positive responses for catalase and cytochrome- oxidase and division by binary fission, and exhibited an aerobic metabolism, showing optimal growth under normal atmospheric conditions. Strain CB-286315 was also able to grow under micro-oxic atmospheres, but not under anoxic conditions. The strain is a slowly growing bacterium able to grow under low nutrient concentrations. Major fatty acids included iso-Cω9, summed feature 3 (Cω7 and/or iso-C 2-OH), C and iso-C. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, two unidentified glycolipids and three phospholipids. The major isoprenoid quinone was MK-8 and the diagnostic diamino acid was -diaminopimelic acid. The DNA G+C content was 67.0 mol%. Based on a polyphasic taxonomic characterization, strain CB-286315 represents a novel genus and species, gen. nov., sp. nov., within the phylum . The type strain of is strain CB-286315 ( = DSM 29007 = CECT 8660). In order to classify the novel taxon within the existing taxonomic framework, the family fam. nov., order ord. nov. and class classis nov. are also proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000974
2016-05-01
2020-09-30
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/5/1976.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000974&mimeType=html&fmt=ahah

References

  1. Alain K., Querellou J.. 2009; Cultivating the uncultured: limits, advances and future challenges. Extremophiles13:583–594 [CrossRef][PubMed]
    [Google Scholar]
  2. Bligh E. G., Dyer W. J.. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol37:911–917 [CrossRef][PubMed]
    [Google Scholar]
  3. Collins M. D., Jones D.. 1981; Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev45:316–354[PubMed]
    [Google Scholar]
  4. DeBruyn J. M., Nixon L. T., Fawaz M. N., Johnson A. M., Radosevich M.. 2011; Global biogeography and quantitative seasonal dynamics of Gemmatimonadetes in soil. Appl Environ Microbiol77:6295–6300 [CrossRef][PubMed]
    [Google Scholar]
  5. DeBruyn J. M., Fawaz M. N., Peacock A. D., Dunlap J. R., Nixon L. T., Cooper K. E., Radosevich M.. 2013; Gemmatirosa kalamazoonesis gen. nov., sp. nov., a member of the rarely-cultivated bacterial phylum Gemmatimonadetes. J Gen Appl Microbiol59:305–312 [CrossRef][PubMed]
    [Google Scholar]
  6. Hanada S., Sekiguchi Y.. 2014; The phylum Gemmatimonadetes. In The Prokaryotes, 4th edn.vol. 11 pp677–681Edited by Rosenberg E., DeLong E. F., Lory S., Stackebrandt E., Thompson F.. Berlin, Heidelberg: Springer;
    [Google Scholar]
  7. Kamagata Y.. 2010; Phylum XXI. Gemmatimonadetes Zhang, Sekiguchi, Hanada, Hugenholtz, Kim, Kamagata and Nakamura 2003, 1161VP. In Bergey's Manual of Systematic Bacteriology, 2nd edn.vol. 4 pp781–784Edited by Krieg N., Staley J., Brown D., Hedlund B., Paster B., Ward N., Ludwig W., Whitman W.. New York: Springer; [CrossRef]
    [Google Scholar]
  8. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  9. Kim M., Oh H. S., Park S. C., Chun J.. 2014; Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol64:346–351 [CrossRef][PubMed]
    [Google Scholar]
  10. Ling L. L., Schneider T., Peoples A. J., Spoering A. L., Engels I., Conlon B. P., Mueller A., Schäberle T. F., Hughes D. E., other authors. 2015; A new antibiotic kills pathogens without detectable resistance. Nature517:455–459 [CrossRef][PubMed]
    [Google Scholar]
  11. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  12. Munoz R., Yarza P., Ludwig W., Euzéby J., Amann R., Schleifer K. H., Glöckner F. O., Schleifer K.-H., Rosselló-Móra R., other authors. 2011; Release LTPs104 of the All-Species Living Tree. Syst Appl Microbiol34:169–170 [CrossRef][PubMed]
    [Google Scholar]
  13. Nichols D., Cahoon N., Trakhtenberg E. M., Pham L., Mehta A., Belanger A., Kanigan T., Lewis K., Epstein S. S.. 2010; Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl Environ Microbiol76:2445–2450 [CrossRef][PubMed]
    [Google Scholar]
  14. Overmann J.. 2013; Principles of enrichment, isolation, cultivation, and preservation of prokaryotes. In The Prokaryotes, 4th edn.vol. 1 pp149–207Edited by Rosenberg E., DeLong E., Lory S., Stackebrandt E., Thompson F.. Berlin, Heidelberg: Springer; [CrossRef]
    [Google Scholar]
  15. Powers E. M.. 1995; Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol61:3756–3758[PubMed]
    [Google Scholar]
  16. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F. O.. 2013; The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res41:(D1)D590–D596 [CrossRef][PubMed]
    [Google Scholar]
  17. Rosselló-Móra R., Amann R.. 2015; Past and future species definitions for Bacteria and Archaea. Syst Appl Microbiol38:209–216 [CrossRef][PubMed]
    [Google Scholar]
  18. Salim S. M., Mandal J., Parija S. C.. 2014; Isolation of Campylobacter from human stool samples. Indian J Med Microbiol32:35–38 [CrossRef][PubMed]
    [Google Scholar]
  19. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  20. Schumann P.. 2011; Peptidoglycan structure. Methods Microbiol38:101–129 [CrossRef]
    [Google Scholar]
  21. Stackebrandt E., Goebel B. M.. 1994; A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol44:846–849 [CrossRef]
    [Google Scholar]
  22. Tamaoka J., Komagata K.. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett25:125–128 [CrossRef]
    [Google Scholar]
  23. Tindall B. J.. 1990; Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett66:199–202 [CrossRef]
    [Google Scholar]
  24. Tindall B. J., Sikorski J., Smibert R. M., Krieg N. R.. 2007; Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology, 3rd edn. pp330–393Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R.. Washington, DC: American Society for Microbiology; [CrossRef]
    [Google Scholar]
  25. Tittsler R. P., Sandholzer L. A.. 1936; The use of semi-solid agar for the detection of bacterial motility. J Bacteriol31:575–580[PubMed]
    [Google Scholar]
  26. Yarza P., Yilmaz P., Pruesse E., Glöckner F. O., Ludwig W., Schleifer K.-H., Whitman W. B., Euzéby J., Amann R., Rosselló-Móra R.. 2014; Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol12:635–645 [CrossRef][PubMed]
    [Google Scholar]
  27. Zeng Y., Feng F., Medová H., Dean J., Koblížek M.. 2014; Functional type 2 photosynthetic reaction centers found in the rare bacterial phylum Gemmatimonadetes. Proc Natl Acad Sci U S A111:7795–7800 [CrossRef][PubMed]
    [Google Scholar]
  28. Zeng Y., Selyanin V., Lukeš M., Dean J., Kaftan D., Feng F., Koblížek M.. 2015; Characterization of the microaerophilic, bacteriochlorophyll a-containing bacterium Gemmatimonas phototrophica sp. nov., and emended descriptions of the genus Gemmatimonas and Gemmatimonas aurantiaca. Int J Syst Evol Microbiol65:2410–2419 [CrossRef][PubMed]
    [Google Scholar]
  29. Zhang H., Sekiguchi Y., Hanada S., Hugenholtz P., Kim H., Kamagata Y., Nakamura K.. 2003; Gemmatimonas aurantiaca gen. nov., sp. nov., a Gram-negative, aerobic, polyphosphate-accumulating micro-organism, the first cultured representative of the new bacterial phylum Gemmatimonadetes phyl. nov. Int J Syst Evol Microbiol53:1155–1163 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000974
Loading
/content/journal/ijsem/10.1099/ijsem.0.000974
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error