1887

Abstract

A Gram-stain-negative, aerobic, rod-shaped, non-motile bacterial strain, designated SCU-B140, was isolated from the insect . Phylogenetic analysis on the basis of 16S rRNA gene sequence showed that strain SCU-B140 belonged to the genus . KCTC 22814 (97.87 %) was identified as the most closely related phylogenetic neighbour of strain SCU-B140. The novel strain was able to grow at salt concentrations of 0–4 % (w/v), at temperatures of 10–40 °C, and at a pH of 6.0–9.0. The major cellular fatty acids were iso-C, summed feature 3 (iso-C 2-OH and/or Cω7), C, C 3-OH, C and C. The major polar lipids consisted of phosphatidylethanolamine, three unknown aminophospholipids, an unknown glycolipid and three unknown polar lipids. MK-7 was the major isoprenoid quinone. The DNA G+C content was 41.2 mol%. The DNA–DNA relatedness value between SCU-B140 and KCTC 22814 was found to be 30.15 %. According to these results, strain SCU-B140 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is SCU-B140 ( = KCTC 42158 = CGMCC 1.12966).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000970
2016-05-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/5/1956.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000970&mimeType=html&fmt=ahah

References

  1. Ahmed I. , Ehsan M. , Sin Y. , Paek J. , Khalid N. , Hayat R. , Chang Y. H. . ( 2014;). Sphingobacterium pakistanensis sp. nov., a novel plant growth promoting rhizobacteria isolated from rhizosphere of Vigna mungo . Antonie van Leeuwenhoek 105: 325–333 [CrossRef] [PubMed].
    [Google Scholar]
  2. Albert R. A. , Waas N. E. , Pavlons S. C. , Pearson J. L. , Ketelboeter L. , Rosselló-Móra R. , Busse H. J. . ( 2013;). Sphingobacterium psychroaquaticum sp. nov., a psychrophilic bacterium isolated from Lake Michigan water. Int J Syst Evol Microbiol 63: 952–958 [CrossRef] [PubMed].
    [Google Scholar]
  3. Altschul S. F. , Gish W. , Miller W. , Myers E. W. , Lipman D. J. . ( 1990;). Basic local alignment search tool. J Mol Biol 215: 403–410 [CrossRef] [PubMed].
    [Google Scholar]
  4. Barrow G. I. , Feltham R. K. A. . (editors) ( 2004;). Cowan and Steel's Manual for the Identification of Medical Bacteria Cambridge: Cambridge University Press;.
    [Google Scholar]
  5. Cappuccino J. G. , Sherman N. . ( 2008;). Microbiology: a Laboratory Manual , 8th edn. San Francisco, CA: Pearson/Benjamin Cummings;.
    [Google Scholar]
  6. Choi H. A. , Lee S. S. . ( 2012;). Sphingobacterium kyonggiense sp. nov., isolated from chloroethene-contaminated soil, and emended descriptions of Sphingobacterium daejeonense and Sphingobacterium mizutaii . Int J Syst Evol Microbiol 62: 2559–2564 [CrossRef] [PubMed].
    [Google Scholar]
  7. Du J. , Singh H. , Won K. , Yang J. E. , Jin F. X. , Yi T. H. . ( 2015;). Sphingobacterium mucilaginosum sp. nov., isolated from rhizosphere soil of a rose. Int J Syst Evol Microbiol 65: 2949–2954 [CrossRef] [PubMed].
    [Google Scholar]
  8. Duan S. , Liu Z. , Feng X. , Zheng K. , Cheng L. . ( 2009;). Sphingobacterium bambusae sp. nov., isolated from soil of bamboo plantation. J Microbiol 47: 693–698 [CrossRef] [PubMed].
    [Google Scholar]
  9. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224–229 [CrossRef].
    [Google Scholar]
  10. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  11. Felsenstein J. . ( 1985;). Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  12. Feng H. , Zeng Y. , Huang Y. . ( 2014;). Sphingobacterium paludis sp. nov., isolated from wetland soil. Int J Syst Evol Microbiol 64: 3453–3458 [CrossRef] [PubMed].
    [Google Scholar]
  13. Gerhardt P. , Murray R. G. E. , Costilow R. N. , Nester E. W. , Wood W. A. , Krieg N. R. , Phillips G. B. . ) (editors) ( 1981;). Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  14. He X. , Xiao T. , Kuang H. , Lan X. , Tudahong M. , Osman G. , Fang C. , Rahman E. . ( 2010;). Sphingobacterium shayense sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 60: 2377–2381 [CrossRef] [PubMed].
    [Google Scholar]
  15. Hiraishi A. , Hoshino Y. . ( 1984;). Distribution of rhodoquinone in Rhodospirillaceae and its taxonomic implications. J Gen Appl Microbiol 30: 435–448 [CrossRef].
    [Google Scholar]
  16. Jiang S. , Chen M. , Su S. , Yang M. , Li A. , Zhang C. , Lin M. , Zhang W. , Luo X. . ( 2014;). Sphingobacterium arenae sp. nov., isolated from sandy soil. Int J Syst Evol Microbiol 64: 248–253 [CrossRef] [PubMed].
    [Google Scholar]
  17. Kates M. . ( 1972;). Techniques of lipidology: isolation, analysis and identification of lipids. . In Laboratory Techniques in Biochemistry and Molecular Biology vol. 3, pp. 269–610. Edited by Work T. S. , Work E. . Amsterdam: Elsevier;.
    [Google Scholar]
  18. Kim K. H. , Ten L. N. , Liu Q. M. , Im W. T. , Lee S. T. . ( 2006;). Sphingobacterium daejeonense sp. nov., isolated from a compost sample. Int J Syst Evol Microbiol 56: 2031–2036 [CrossRef] [PubMed].
    [Google Scholar]
  19. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. , other authors . ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  20. Kimura M. . ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120 [CrossRef] [PubMed].
    [Google Scholar]
  21. Kimura M. . ( 1983;). The Neutral Theory of Molecular Evolution New York: Cambridge University Press;.[CrossRef]
    [Google Scholar]
  22. Lee D. H. , Hur J. S. , Kahng H. Y. . ( 2013;). Sphingobacterium cladoniae sp. nov., isolated from lichen, Cladonia sp., and emended description of Sphingobacterium siyangense . Int J Syst Evol Microbiol 63: 755–760 [CrossRef] [PubMed].
    [Google Scholar]
  23. Li W. J. , Xu P. , Schumann P. , Zhang Y. Q. , Pukall R. , Xu L. H. , Stackebrandt E. , Jiang C. L. . ( 2007;). Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia . Int J Syst Evol Microbiol 57: 1424–1428 [CrossRef] [PubMed].
    [Google Scholar]
  24. Liu R. , Liu H. , Zhang C. X. , Yang S. Y. , Liu X. H. , Zhang K. Y. , Lai R. . ( 2008;). Sphingobacterium siyangense sp. nov., isolated from farm soil. Int J Syst Evol Microbiol 58: 1458–1462 [CrossRef] [PubMed].
    [Google Scholar]
  25. Liu J. , Yang L. L. , Xu C. K. , Xi J. Q. , Yang F. X. , Zhou F. , Zhou Y. , Mo M. H. , Li W. J. . ( 2012;). Sphingobacterium nematocida sp. nov., a nematicidal endophytic bacterium isolated from tobacco. Int J Syst Evol Microbiol 62: 1809–1813 [CrossRef] [PubMed].
    [Google Scholar]
  26. Liu H. , Zhang J. , Chen D. , Cao L. , Lu P. , Wu Z. , Yang F. , Li S. , Hong Q. . ( 2013;). Sphingobacterium changzhouense sp. nov., a bacterium isolated from a rice field. Int J Syst Evol Microbiol 63: 4515–4518 [CrossRef] [PubMed].
    [Google Scholar]
  27. Marqués A. M. , Burgos-Díaz C. , Aranda F. J. , Teruel J. A. , Manresa À. , Ortiz A. , Farfán M. . ( 2012;). Sphingobacterium detergens sp. nov., a surfactant-producing bacterium isolated from soil. Int J Syst Evol Microbiol 62: 3036–3041 [CrossRef] [PubMed].
    [Google Scholar]
  28. Matsuyama H. , Katoh H. , Ohkushi T. , Satoh A. , Kawahara K. , Yumoto I. . ( 2008;). Sphingobacterium kitahiroshimense sp. nov., isolated from soil. Int J Syst Evol Microbiol 58: 1576–1579 [CrossRef] [PubMed].
    [Google Scholar]
  29. Mehnaz S. , Weselowski B. , Lazarovits G. . ( 2007;). Sphingobacterium canadense sp. nov., an isolate from corn roots. Syst Appl Microbiol 30: 519–524 [CrossRef] [PubMed].
    [Google Scholar]
  30. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  31. Peng S. , Hong D. D. , Xin Y. B. , Jun L. M. , Hong W. G. . ( 2014;). Sphingobacterium yanglingense sp. nov., isolated from the nodule surface of soybean. Int J Syst Evol Microbiol 64: 3862–3866 [CrossRef] [PubMed].
    [Google Scholar]
  32. Raj P. S. , Ramaprasad E.V.V. , Vaseef S. , Sasikala Ch. , Ramana Ch. V. . ( 2013;). Rhodobacter viridis sp. nov., a phototrophic bacterium isolated from mud of a stream. Int J Syst Evol Microbiol 63: 181–186 [CrossRef] [PubMed].
    [Google Scholar]
  33. Rzhetsky A. , Nei M. . ( 1992;). A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol 9: 945–967.
    [Google Scholar]
  34. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  35. Schmidt V. S. , Wenning M. , Scherer S. . ( 2012;). Sphingobacterium lactis sp. nov. and Sphingobacterium alimentarium sp. nov., isolated from raw milk and a dairy environment. Int J Syst Evol Microbiol 62: 1506–1511 [CrossRef] [PubMed].
    [Google Scholar]
  36. Smibert R. M. , Krieg N. R. . ( 1994;). Phenotypic characteristics. . In Manual of Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  37. Son H. M. , Yang J. E. , Kook M. C. , Shin H. S. , Park S. Y. , Lee D. G. , Yi T. H. . ( 2013;). Sphingobacterium ginsenosidimutans sp. nov., a bacterium with ginsenoside-converting activity isolated from the soil of a ginseng field. J Gen Appl Microbiol 59: 345–352 [CrossRef] [PubMed].
    [Google Scholar]
  38. Sun L. N. , Zhang J. , Chen Q. , He J. , Li S. P. . ( 2013;). Sphingobacterium caeni sp. nov., isolated from activated sludge. Int J Syst Evol Microbiol 63: 2260–2264 [CrossRef] [PubMed].
    [Google Scholar]
  39. Takeuchi M. , Yokota A. . ( 1992;). Proposals of Sphingobacterium faecium sp. nov., Sphingobacterium piscium sp. nov., Sphingobacterium heparinum comb. nov., Sphingobacterium thalpophilum comb. nov. and two genospecies of the genus Sphingobacterium, and synonymy of Flavobacterium yabuuchiae and Sphingobacterium spiritivorum . J Gen Appl Microbiol 38: 465–482 [CrossRef].
    [Google Scholar]
  40. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  41. Ten L. N. , Liu Q. M. , Im W. T. , Aslam Z. , Lee S. T. . ( 2006;). Sphingobacterium composti sp. nov., a novel DNase-producing bacterium isolated from compost. J Microbiol Biotechnol 16: 1728–1733.
    [Google Scholar]
  42. Wauters G. , Janssens M. , De Baere T. , Vaneechoutte M. , Deschaght P. . ( 2012;). Isolates belonging to CDC group II-i belong predominantly to Sphingobacterium mizutaii Yabuuchi et al. 1983: emended descriptions of S. mizutaii and of the genus Sphingobacterium . Int J Syst Evol Microbiol 62: 2598–2601 [CrossRef] [PubMed].
    [Google Scholar]
  43. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P.A.D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W.E.C. , Murray R.G.E. , other authors . ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  44. Wei W. , Zhou Y. , Wang X. , Huang X. , Lai R. . ( 2008;). Sphingobacterium anhuiense sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 58: 2098–2101 [CrossRef] [PubMed].
    [Google Scholar]
  45. Xiao T. , He X. , Cheng G. , Kuang H. , Ma X. , Yusup K. , Hamdun M. , Gulsimay A. , Fang C. , Rahman E. . ( 2013;). Sphingobacterium hotanense sp. nov., isolated from soil of a Populus euphratica forest, and emended descriptions of Sphingobacterium daejeonense and Sphingobacterium shayense . Int J Syst Evol Microbiol 63: 815–820 [CrossRef] [PubMed].
    [Google Scholar]
  46. Yabe S. , Aiba Y. , Sakai Y. , Hazaka M. , Kawahara K. , Yokota A. . ( 2013;). Sphingobacterium thermophilum sp. nov., of the phylum Bacteroidetes, isolated from compost. Int J Syst Evol Microbiol 63: 1584–1588 [CrossRef] [PubMed].
    [Google Scholar]
  47. Yabuuchi E. , Kaneko T. , Yano I. , Moss C. W. , Miyoshi N. . ( 1983;). Sphingobacterium gen. nov., Sphingobacterium spiritivorum comb. nov., Sphingobacterium multivorum comb. nov., Sphingobacterium mizutae sp. nov., and Flavobacterium indologenes sp. nov.: glucose-nonfermenting Gram-negative rods in CDC groups IIK-2 and IIb. Int J Syst Bacteriol 33: 580–598 [CrossRef].
    [Google Scholar]
  48. Zhang J. , Zheng J. W. , Cho B. C. , Hwang C. Y. , Fang C. , He J. , Li S. P. . ( 2012;). Sphingobacterium wenxiniae sp. nov., a cypermethrin-degrading species from activated sludge. Int J Syst Evol Microbiol 62: 683–687 [CrossRef] [PubMed].
    [Google Scholar]
  49. Zhao P. , Zhou Z. , Chen M. , Lin W. , Zhang W. , Wei G. . ( 2014;). Sphingobacterium gobiense sp. nov., isolated from soil of the Gobi Desert. Int J Syst Evol Microbiol 64: 3931–3935 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000970
Loading
/content/journal/ijsem/10.1099/ijsem.0.000970
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error