1887

Abstract

A halotolerant actinobacterial strain, designated EGI 80423, was isolated from a desert soil of Xinjiang, north-west China, and subjected to a polyphasic taxonomic characterization. Strain EGI 80423 grew at pH 7.0–10.0 and with 0–14.0 % (w/v) NaCl, optimally at pH 8.0–9.0 and with 2.0–4.0 % (w/v) NaCl. Cells of strain EGI 80423 were Gram-stain-positive, non-motile cocci with diameters of 0.6–0.8 μm. The diagnostic diamino acid of the peptidoglycan was ornithine, and the interpeptide bridge was Orn ← Glu. The major fatty acids identified were iso-C17 : 1ω9c, iso-C15 : 0 and iso-C17 : 0. The predominant menaquinone was MK-8(H4), while the polar lipids were diphosphatidylglycerol, phosphatidylglycerol, two unknown phospholipids, two unknown glycolipids, six unknown phosphoglycolipids and five unknown polar lipids. The G+C content of the genomic DNA was 72.8 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain EGI 80423 clustered with the single member of the genus Ornithinicoccus. Sequence similarity between strain EGI 80423 and Ornithinicoccus hortensis NBRC 16434. Because the type strain has been provided by NBRC, Japan was 97.7 %. The DNA–DNA relatedness value between strain EGI 80423 and O. hortensis NBRC 16434 was 36.84 %. Based on morphological, chemotaxonomic and phylogenetic characteristics, and DNA–DNA hybridization data, strain EGI 80423 represents a novel species of the genus Ornithinicoccus, for which the name Ornithinicoccus halotolerans sp. nov. is proposed. The type strain is EGI 80423 ( = CGMCC 1.14989 = KCTC 39700). The description of the genus Ornithinicoccus has also been emended.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000964
2016-04-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/4/1894.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000964&mimeType=html&fmt=ahah

References

  1. Collins M. D. , Pirouz T. , Goodfellow M. , Minnikin D. E. . ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100: 221–230 [CrossRef] [PubMed].
    [Google Scholar]
  2. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224–229 [CrossRef].
    [Google Scholar]
  3. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  4. Felsenstein J. . ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–789 [CrossRef].
    [Google Scholar]
  5. Fitch W. M. . ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  6. Garrity G. M. , Lilburn T. G. , Cole J. R. , Harrison S. H. , Euzéby J. , Tindall B. J. . ( 2007;). The taxonomic outline of the bacteria and archaea, release 7.7, part 10 – the bacteria: phylum “Actinobacteria”: Class Actinobacteria . , pp. 399–541.http://taxonomicoutline.org/content/7/7/. [CrossRef].
  7. Goodfellow M. . ( 1971;). Numerical taxonomy of some nocardioform bacteria. J Gen Microbiol 69: 33–80 [CrossRef] [PubMed].
    [Google Scholar]
  8. Gregersen T. . ( 1978;). Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5: 123–127 [CrossRef].
    [Google Scholar]
  9. Groth I. , Schumann P. , Weiss N. , Martin K. , Rainey F. A. . ( 1996;). Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46: 234–239 [CrossRef] [PubMed].
    [Google Scholar]
  10. Groth I. , Schumann P. , Martin K. , Schuetze B. , Augsten K. , Kramer I. , Stackebrandt E. . ( 1999;). Ornithinicoccus hortensis gen. nov., sp. nov., a soil actinomycete which contains l-ornithine. Int J Syst Bacteriol 49: 1717–1724 [CrossRef] [PubMed].
    [Google Scholar]
  11. Kämpfer P. , Groth I. . ( 2012;). Family IX. Intrasporangiaceae . . In Bergey's Manual of Systematic Bacteriology vol. 5 , 2nd edn., pp. 754–801. Edited by Bergey D. H. , Whitman W. B. , Goodfellow M. , Kämpfer P. , Busse H. J. . New York: Springer;.[CrossRef]
    [Google Scholar]
  12. Kelly K. L. . ( 1964;). Inter-Society Color Council – National Bureau of Standards Color Name Charts Illustrated with Centroid Colors Washington, DC: US Government Printing Office;.
    [Google Scholar]
  13. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. , other authors . ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  14. Li W. J. , Xu P. , Schumann P. , Zhang Y. Q. , Pukall R. , Xu L. H. , Stackebrandt E. , Jiang C. L. . ( 2007;). Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia . Int J Syst Evol Microbiol 57: 1424–1428 [CrossRef] [PubMed].
    [Google Scholar]
  15. Marmur J. . ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3: 208–218 [CrossRef].
    [Google Scholar]
  16. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  17. Minnikin D. E. , Alshamaony L. , Goodfellow M. . ( 1975;). Differentiation of Mycobacterium, Nocardia, and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. J Gen Microbiol 88: 200–204 [CrossRef] [PubMed].
    [Google Scholar]
  18. Minnikin D. E. , O'Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal K. , Parlett J. H. . ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  19. Reasoner D. J. , Geldreich E. E. . ( 1985;). A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49: 1–7 [PubMed].
    [Google Scholar]
  20. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  21. Sasser M. . ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  22. Schleifer K. H. , Kandler O. . ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36: 407–477 [PubMed].
    [Google Scholar]
  23. Schumann P. . ( 2011;). Peptidoglycan structure. Methods Microbiol 38: 101–129 [CrossRef].
    [Google Scholar]
  24. Shirling E. B. , Gottlieb D. . ( 1966;). Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16: 313–340 [CrossRef].
    [Google Scholar]
  25. Stackebrandt E. , Goebel B. M. . ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44: 846–849 [CrossRef].
    [Google Scholar]
  26. Stackebrandt E. , Schumann P. . ( 2000;). Description of Bogoriellaceae fam. nov., Dermacoccaceae fam. nov., Rarobacteraceae fam. nov. and Sanguibacteraceae fam. nov. and emendation of some families of the suborder Micrococcineae . Int J Syst Evol Microbiol 50: 1279–1285 [CrossRef] [PubMed].
    [Google Scholar]
  27. Tamura K. , Stecher G. , Peterson D. , Filipski A. , Kumar S. . ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  28. Tang S. K. , Wang Y. , Chen Y. , Lou K. , Cao L. L. , Xu L. H. , Li W. J. . ( 2009;). Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella . Int J Syst Evol Microbiol 59: 2025–2032 [CrossRef] [PubMed].
    [Google Scholar]
  29. Williams S. T. , Goodfellow M. , Alderson G. , Wellington E. M. , Sneath P. H. , Sackin M. J. . ( 1983;). Numerical classification of Streptomyces and related genera. J Gen Microbiol 129: 1743–1813 [PubMed].
    [Google Scholar]
  30. Xu P. , Li W. J. , Tang S. K. , Zhang Y. Q. , Chen G. Z. , Chen H. H. , Xu L. H. , Jiang C. L. . ( 2005;). Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 55: 1149–1153 [CrossRef] [PubMed].
    [Google Scholar]
  31. Zhi X. Y. , Li W. J. , Stackebrandt E. . ( 2009;). An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59: 589–608 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000964
Loading
/content/journal/ijsem/10.1099/ijsem.0.000964
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error