1887

Abstract

Strain RP1, a Gram-stain-positive, non-motile, non-spore-forming, coccus-shaped bacterium, was isolated from drainage of India Pesticides Limited, a lindane-producing unit situated at Chinhat, Lucknow, India. 16S rRNA gene sequence analysis revealed that strain RP1 belongs to the family and was closely related to the members of the genus with a similarity range of 95.4–97.6 %. Strain RP1 was facultatively anaerobic, oxidase-negative, catalase-positive and capable of nitrate reduction. Strain RP1 contained peptidoglycan type A3γ′, with -diaminopimelic acid as the diagnostic diamino acid and glycine at position 1 of the peptide subunit. The major cellular fatty acid of strain RP1 was anteiso-C but a significant amount of iso-C was also detected. MK-9(H) was the major respiratory quinone and polyamines detected were spermine and spermidine. The polar lipids included diphosphatidylglycerol, phosphatidylglycerol, two unknown glycolipids and two unknown phospholipids. The G+C content of the DNA was 66.7 mol%. The levels of DNA–DNA relatedness between RP1 and KSS-17Se, SL014B-20A1 and SST-39 were 49.8, 34.8 and 23.5 %, respectively. Based on the phenotypic and phylogenetic data presented, strain RP1 can be differentiated from previously described species of the genus and thus represents a novel species, for which the name sp. nov. is proposed. The type strain is RP1 ( = DSM 100159 = MCC 2769 = KCTC 39686).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000958
2016-04-01
2020-08-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/4/1862.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000958&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  2. Arden Jones M. P., McCarthy A. J., Cross T.. 1979; Taxonomic and serologic studies on Micropolyspora faeni and Micropolyspora strains from soil bearing the specific epithet rectivirgula. J Gen Microbiol115:343–354 [CrossRef][PubMed]
    [Google Scholar]
  3. Bae H. S., Moe W. M., Yan J., Tiago I., da Costa M. S., Rainey F. A.. 2006; Brooklawnia cerclae gen. nov., sp. nov., a propionate-forming bacterium isolated from chlorosolvent-contaminated groundwater. Int J Syst Evol Microbiol56:1977–1983 [CrossRef][PubMed]
    [Google Scholar]
  4. Bauer A. W., Kirby W. M. M., Sherris J. C., Turck M.. 1966; Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol45:493–496[PubMed]
    [Google Scholar]
  5. Bligh E. G., Dyer W. J.. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol37:911–917 [CrossRef][PubMed]
    [Google Scholar]
  6. Bowman J. P., Nichols C. M., Gibson J. A. E.. 2003; Algoriphagus ratkowskyi gen. nov., sp. nov., Brumimicrobium glaciale gen. nov., sp. nov., Cryomorpha ignava gen. nov., sp. nov. and Crocinitomix catalasitica gen. nov., sp. nov., novel flavobacteria isolated from various polar habitats. Int J Syst Evol Microbiol53:1343–1355 [CrossRef][PubMed]
    [Google Scholar]
  7. Busse J., Auling G.. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol11:1–8 [CrossRef]
    [Google Scholar]
  8. Cai M., Wang L., Cai H., Li Y., Wang Y. N., Tang Y. Q., Wu X. L.. 2011; Salinarimonas ramus sp. nov. and Tessaracoccus oleiagri sp. nov., isolated from a crude oil-contaminated saline soil. Int J Syst Evol Microbiol61:1767–1775 [CrossRef][PubMed]
    [Google Scholar]
  9. Christensen W. B.. 1946; Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. J Bacteriol52:461–466[PubMed]
    [Google Scholar]
  10. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  11. Collins M. D., Shah H. N., Minnikin D. E.. 1980; A note on the separation of natural mixtures of bacterial menaquinones using reverse phase thin-layer chromatography. J Appl Bacteriol48:277–282 [CrossRef][PubMed]
    [Google Scholar]
  12. Cowan S. T., Steel K. J.. 1965; Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  13. Delwiche E. A.. 1957; Family XI. Propionibacteriaceae fam. nov.. In Bergey's Manual of Determinative Bacteriology, 7th edn. p569Edited by Breed R. S., Murray E. G. D., Smith N. R.. Baltimore: Williams & Wilkins;
    [Google Scholar]
  14. Dwivedi V., Niharika N., Lal R.. 2013; Pontibacter lucknowensis sp. nov., isolated from a hexachlorocyclohexane dump site. Int J Syst Evol Microbiol63:309–313 [CrossRef][PubMed]
    [Google Scholar]
  15. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  16. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  17. Gonzalez J. M., Saiz-Jimenez C.. 2002; A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol4:770–773 [CrossRef][PubMed]
    [Google Scholar]
  18. Gordon R. E., Barnett D. A., Handerran J. E., Pang C. H. N.. 1974; Nocardia coeliaca, Nocardia autotrophica and the Nocardin strain. Int J Syst Evol Microbiol24:54–63
    [Google Scholar]
  19. Gupta S. K., Kumari R., Prakash O., Lal R.. 2008; Pseudomonas panipatensis sp. nov., isolated from an oil-contaminated site. Int J Syst Evol Microbiol58:1339–1345 [CrossRef][PubMed]
    [Google Scholar]
  20. Gupta S. K., Lal D., Lal R.. 2009; Novosphingobium panipatense sp. nov. and Novosphingobium mathurense sp. nov., from oil-contaminated soil. Int J Syst Evol Microbiol59:156–161 [CrossRef][PubMed]
    [Google Scholar]
  21. Jukes T., Cantor C. R.. 1969; Evolution of protein molecules. In Mammalian Protein Metabolismvol. 3 pp21–132Edited by Munro H. N.. New York: Academic Press; [CrossRef]
    [Google Scholar]
  22. Kämpfer P., Lodders N., Warfolomeow I., Busse H. J.. 2009; Tessaracoccus lubricantis sp. nov., isolated from a metalworking fluid. Int J Syst Evol Microbiol59:1545–1549 [CrossRef][PubMed]
    [Google Scholar]
  23. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  24. Kluge A. G., Farris J. S.. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool18:1–32 [CrossRef]
    [Google Scholar]
  25. Kumar M., Verma M., Lal R.. 2008; Devosia chinhatensis sp. nov., isolated from a hexachlorocyclohexane (HCH) dump site in India. Int J Syst Evol Microbiol58:861–865 [CrossRef][PubMed]
    [Google Scholar]
  26. Kumar R., Dwivedi V., Nayyar N., Verma H., Singh A. K., Rani P., Rao D. L. N., Lal R.. 2015; Parapedobacter indicus sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol65:129–134 [CrossRef][PubMed]
    [Google Scholar]
  27. Kuykendall L. D., Roy M. A., O'Neil J. J., Devine T. E.. 1988; Fatty acids, antibiotics resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol38:358–361 [CrossRef]
    [Google Scholar]
  28. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A., other authors. 2007; clustal w clustal_x version 2.0. Bioinformatics23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  29. Lee D. W., Lee S. D.. 2008; Tessaracoccus flavescens sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol58:785–789 [CrossRef][PubMed]
    [Google Scholar]
  30. Li G. D., Chen X., Li Q. Y., Xu F. J., Qiu S. M., Jiang Y., Jiang C. L.. 2016; Tessaracoccus rhinocerotis sp. nov., isolated from the faeces of Rhinoceros unicornis. Int J Syst Evol Microbiol [CrossRef][PubMed]
    [Google Scholar]
  31. Mahato N. K., Tripathi C., Nayyar N., Singh A. K., Lal R.. 2016; Pontibacter ummariensis sp. nov., isolated from a hexachlorocyclohexane contaminated soil. Int J Syst Evol Microbiol [CrossRef]
    [Google Scholar]
  32. Malhotra J., Anand S., Jindal S., Rajagopal R., Lal R.. 2012; Acinetobacter indicus sp. nov., isolated from a hexachlorocyclohexane dump site. Int J Syst Evol Microbiol62:2883–2890 [CrossRef][PubMed]
    [Google Scholar]
  33. Maszenan A. M., Seviour R. J., Patel B. K. C., Schumann P., Rees G. N.. 1999; Tessaracoccus bendigoensis gen. nov., sp. nov., a gram-positive coccus occurring in regular packages or tetrads, isolated from activated sludge biomass. Int J Syst Bacteriol49:459–468 [CrossRef][PubMed]
    [Google Scholar]
  34. McCarthy A. J., Cross T.. 1984; A taxonomic study of Thermomonospora and other monosporic actinomycetes. J Gen Microbiol130:5–25
    [Google Scholar]
  35. Miller L. T.. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol16:584–586[PubMed]
    [Google Scholar]
  36. Prakash O., Lal R.. 2006; Description of Sphingobium fuliginis sp. nov., a phenanthrene-degrading bacterium from a fly ash dumping site, and reclassification of Sphingomonas cloacae as Sphingobium cloacae comb. nov. Int J Syst Evol Microbiol56:2147–2152 [CrossRef][PubMed]
    [Google Scholar]
  37. Prakash O., Kumari K., Lal R.. 2007; Pseudomonas delhiensis sp. nov., from a fly ash dumping site of a thermal power plant. Int J Syst Evol Microbiol57:527–531 [CrossRef][PubMed]
    [Google Scholar]
  38. Puente-Sánchez F., Sánchez-Román M., Amils R., Parro V.. 2014; Tessaracoccus lapidicaptus sp. nov., an actinobacterium isolated from the deep subsurface of the Iberian pyrite belt. Int J Syst Evol Microbiol64:3546–3552 [CrossRef][PubMed]
    [Google Scholar]
  39. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  40. Schumann P.. 2011; Peptidoglycan structure. Methods Microbiol38:101–129 [CrossRef]
    [Google Scholar]
  41. Sharma P., Verma M., Bala K., Nigam A., Lal R.. 2010; Sphingopyxis ummariensis sp. nov., isolated from a hexachlorocyclohexane dump site. Int J Syst Evol Microbiol60:780–784 [CrossRef][PubMed]
    [Google Scholar]
  42. Singh A., Lal R.. 2009; Sphingobium ummariense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium, isolated from HCH-contaminated soil. Int J Syst Evol Microbiol59:162–166 [CrossRef][PubMed]
    [Google Scholar]
  43. Singh A. K., Garg N., Sangwan N., Negi V., Kumar R., Vikram S., Lal R.. 2013; Pontibacter ramchanderi sp. nov., isolated from hexachlorocyclohexane-contaminated pond sediment. Int J Syst Evol Microbiol63:2829–2834 [CrossRef][PubMed]
    [Google Scholar]
  44. Singh A. K., Garg N., Lata P., Kumar R., Negi V., Vikram S., Lal R.. 2014; Pontibacter indicus sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol64:254–259 [CrossRef][PubMed]
    [Google Scholar]
  45. Singh A. K., Garg N., Lal R.. 2015; Pontibacter chinhatensis sp. nov., isolated from pond sediment containing discarded hexachlorocyclohexane isomer waste. Int J Syst Evol Microbiol65:2248–2254 [CrossRef][PubMed]
    [Google Scholar]
  46. Smibert R. M., Krieg N. R.. 1994; Phenotypic characterization. In Methods for General and Molecular bacteriology pp607–654Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  47. Stackebrandt E., Goebel B. M.. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol44:846–849 [CrossRef]
    [Google Scholar]
  48. Stackebrandt E., Rainey F. A., Ward-Rainey N. L.. 1997; Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol47:479–491 [CrossRef]
    [Google Scholar]
  49. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  50. Tindall B. J., Sikorski J., Smibert R. M., Krieg N. R.. 2007; Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology, 3rd edn. pp330–393Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G., Schmidt T. M., Snyder L. R.. Washington, DC: American Society for Microbiology; [CrossRef]
    [Google Scholar]
  51. Tourova T. P., Antonov A. S.. 1988; Identification of microorganisms by rapid DNA-DNA hybridization. Methods Microbiol19:333–355 [CrossRef]
    [Google Scholar]
  52. Vandamme P., Pot B., Gillis M., de Vos P., Kersters K., Swings J.. 1996; Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev60:407–438[PubMed]
    [Google Scholar]
  53. Verma M., Kumar M., Dadhwal M., Kaur J., Lal R.. 2009; Devosia albogilva sp. nov. and Devosia crocina sp. nov., isolated from a hexachlorocyclohexane dump site. Int J Syst Evol Microbiol59:795–799 [CrossRef][PubMed]
    [Google Scholar]
  54. Verma H., Rani P., Kumar Singh A., Kumar R., Dwivedi V., Negi V., Lal R.. 2015; Sphingopyxis flava sp. nov., isolated from a hexachlorocyclohexane (HCH)-contaminated soil. Int J Syst Evol Microbiol65:3720–3726 [CrossRef][PubMed]
    [Google Scholar]
  55. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., other authors. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464 [CrossRef]
    [Google Scholar]
  56. Zhi X. Y., Li W. J., Stackebrandt E.. 2009; An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol59:589–608 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000958
Loading
/content/journal/ijsem/10.1099/ijsem.0.000958
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error