1887

Abstract

A Gram-stain-negative, aerobic, rod-shaped, non-spore-forming, yellow pigmented bacterial strain (UM1) was isolated from the hexachlorocyclohexane (HCH)-contaminated dumpsite located at Ummari village in Lucknow, India. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain UM1 belongs to the genus Luteimonas with Luteimonas aestuarii B9 as the closest neighbour (97.2 % 16S rRNA gene sequence similarity). The DNA G+C content of strain UM1 was 64.3 mol%. The major polar lipids were diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE) and phosphatidylglycerol (PG). Main fatty acids were iso-C15 : 0, iso-C11 : 0, iso-C11 : 0 3-OH, iso-C17 : 0 and summed feature 9 (C16 : 0 10-methyl and/or iso-C17 : 1ω9c). Ubiquinone (Q-8) was the only respiratory quinone. Spermidine was detected as the major polyamine. The DNA–DNA relatedness value of strain UM1 with respect to its closest neighbour Luteimonas aestuarii B9 was well below 70 % (∼49 %). Thus, data obtained from phylogenetic analysis, DNA–DNA hybridization, and chemotaxonomical and biochemical analyses supports classification of strain UM1 as representative of a novel species of the genus Luteimonas, for which the name Luteimonas tolerans sp. nov. is proposed. The type strain is UM1 ( = DSM 28473 = MCC 2572 = KCTC 42936).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000956
2016-04-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/4/1851.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000956&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. ( 1990;). Basic local alignment search tool. J Mol Biol 215: 403–410 [CrossRef] [PubMed].
    [Google Scholar]
  2. Baik K. S., Park S. C., Kim M. S., Kim E. M., Park C., Chun J., Seong C. N.. ( 2008;). Luteimonas marina sp. nov., isolated from seawater. Int J Syst Evol Microbiol 58: 2904–2908 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bala K., Sharma P., Lal R.. ( 2010;). Sphingobium quisquiliarum sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH-contaminated soil. Int J Syst Evol Microbiol 60: 429–433 [CrossRef] [PubMed].
    [Google Scholar]
  4. Bligh E. G., Dyer W. J.. ( 1959;). A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37: 911–917 [CrossRef] [PubMed].
    [Google Scholar]
  5. Bowman J. P., Nichols C. M., Gibson J. A. E.. ( 2003;). Algoriphagus ratkowskyi gen. nov., sp. nov., Brumimicrobium glaciale gen. nov., sp. nov., Cryomorpha ignava gen. nov., sp. nov. and Crocinitomix catalasitica gen. nov., sp. nov., novel flavobacteria isolated from various polar habitats. Int J Syst Evol Microbiol 53: 1343–1355 [CrossRef] [PubMed].
    [Google Scholar]
  6. Busse H.-J., Auling G.. ( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11: 1–8 [CrossRef].
    [Google Scholar]
  7. Cheng J., Zhang M.-Y., Wang W.-X., Manikprabhu D., Salam N., Zhang T.-Y., Wu Y.-Y., Li W.-J., Zhang Y.-X.. ( 2016;). Luteimonas notoginsengisoli sp. nov., isolated from rhizosphere soil. Int J Syst Evol Microbiol [CrossRef].
    [Google Scholar]
  8. Chou J. H., Cho N. T., Arun A. B., Young C. C., Chen W. M.. ( 2008;). Luteimonas aquatica sp. nov., isolated from fresh water from Southern Taiwan. Int J Syst Evol Microbiol 58: 2051–2055 [CrossRef] [PubMed].
    [Google Scholar]
  9. Collins M. D., Jones D.. ( 1981;). Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev 45: 316–354 [PubMed].
    [Google Scholar]
  10. Dadhwal M., Jit S., Kumari H., Lal R.. ( 2009;). Sphingobium chinhatense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH dumpsite. Int J Syst Evol Microbiol 59: 3140–3144 [CrossRef] [PubMed].
    [Google Scholar]
  11. Dwivedi V., Niharika N., Lal R.. ( 2013;). Pontibacter lucknowensis sp. nov., isolated from a hexachlorocyclohexane dump site. Int J Syst Evol Microbiol 63: 309–313 [CrossRef] [PubMed].
    [Google Scholar]
  12. Fan X., Yu T., Li Z., Zhang X. H.. ( 2014;). Luteimonas abyssi sp. nov., isolated from deep-sea sediment. Int J Syst Evol Microbiol 64: 668–674 [CrossRef] [PubMed].
    [Google Scholar]
  13. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  14. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  15. Finkmann W., Altendorf K., Stackebrandt E., Lipski A.. ( 2000;). Characterization of N2O-producing Xanthomonas-like isolates from biofilters as Stenotrophomonas nitritireducens sp. nov., Luteimonas mephitis gen. nov., sp. nov. and Pseudoxanthomonas broegbernensis gen. nov., sp. nov. Int J Syst Evol Microbiol 50: 273–282 [CrossRef] [PubMed].
    [Google Scholar]
  16. Garg N., Bala K., Lal R.. ( 2012;). Sphingobium lucknowense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from HCH-contaminated soil. Int J Syst Evol Microbiol 62: 618–623 [CrossRef] [PubMed].
    [Google Scholar]
  17. Gonzalez J. M., Saiz-Jimenez C.. ( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4: 770–773 [CrossRef] [PubMed].
    [Google Scholar]
  18. Arden Jones M. P., McCarthy A. J., Cross T.. ( 1979;). Taxonomic and serological studies on Micropolyspora faeni and Micropolyspora strains from soil bearing the specific epithet rectivirgula. J Gen Microbiol 115: 343–354 [CrossRef] [PubMed].
    [Google Scholar]
  19. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolismvol. 3, pp. 21–132. Edited by Munro H. N.. New York:: Academic Press; [CrossRef]
    [Google Scholar]
  20. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  21. Kumar M., Verma M., Lal R.. ( 2008;). Devosia chinhatensis sp. nov., isolated from a hexachlorocyclohexane (HCH) dump site in India. Int J Syst Evol Microbiol 58: 861–865 [CrossRef] [PubMed].
    [Google Scholar]
  22. Kumar R., Dwivedi V., Nayyar N., Verma H., Singh A. K., Rani P., Rao D. L. N., Lal R.. ( 2015;). Parapedobacter indicus sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol 65: 129–134 [CrossRef] [PubMed].
    [Google Scholar]
  23. Kumari H., Gupta S. K., Jindal S., Katoch P., Lal R.. ( 2009;). Sphingobium lactosutens sp. nov., isolated from a hexachlorocyclohexane dump site and Sphingobium abikonense sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 59: 2291–2296 [CrossRef] [PubMed].
    [Google Scholar]
  24. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A., other authors. ( 2007;). clustal w clustal_x version 2.0. Bioinformatics 23: 2947–2948 [CrossRef] [PubMed].
    [Google Scholar]
  25. Lin S.-Y., Hameed A., Shahina M., Liu Y.-C., Hsu Y.-H., Wen C.-Z., Young C.-C.. ( 2016;). Description of Luteimonas pelagia sp. nov., isolated from marine sediment and emendation of Luteimonas aquatica, Luteimonas composti, Luteimonas mephitis, Lysobacter enzymogenes subsp. enzymogenes and Lysobacter panaciterrae. Int J Syst Evol Microbiol [CrossRef].
    [Google Scholar]
  26. Mahato N. K., Tripathi C., Nayyar N., Singh A. K., Lal R.. ( 2016;). Pontibacter ummariensis sp. nov., isolated from a hexachlorocyclohexane contaminated soil. Int J Syst Evol Microbiol [CrossRef].
    [Google Scholar]
  27. McCarthy A. J., Cross T.. ( 1984;). A taxonomic study of Thermomonospora and other monosporic actinomycetes. J Gen Microbiol 130: 5–25 [CrossRef].
    [Google Scholar]
  28. Miller L. T.. ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16: 584–586 [PubMed].
    [Google Scholar]
  29. Park Y. J., Park M. S., Lee S. H., Park W., Lee K., Jeon C. O.. ( 2011;). Luteimonas lutimaris sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 61: 2729–2733 [CrossRef] [PubMed].
    [Google Scholar]
  30. Roh S. W., Kim K. H., Nam Y. D., Chang H. W., Kim M. S., Yoon J. H., Oh H. M., Bae J. W.. ( 2008;). Luteimonas aestuarii sp. nov., isolated from tidal flat sediment. J Microbiol 46: 525–529 [CrossRef] [PubMed].
    [Google Scholar]
  31. Romanenko L. A., Tanaka N., Svetashev V. I., Kurilenko V. V., Mikhailov V. V.. ( 2013;). Luteimonas vadosa sp. nov., isolated from seashore sediment. Int J Syst Evol Microbiol 63: 1261–1266 [CrossRef] [PubMed].
    [Google Scholar]
  32. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  33. Sangwan N., Lata P., Dwivedi V., Singh A., Niharika N., Kaur J., Anand S., Malhotra J., Jindal S., other authors. ( 2012;). Comparative metagenomic analysis of soil microbial communities across three hexachlorocyclohexane contamination levels. PLoS One 7: e46219 [CrossRef] [PubMed].
    [Google Scholar]
  34. Sangwan N., Verma H., Kumar R., Negi V., Lax S., Khurana P., Khurana J. P., Gilbert J. A., Lal R.. ( 2014;). Reconstructing an ancestral genotype of two hexachlorocyclohexane-degrading Sphingobium species using metagenomic sequence data. ISME J 8: 398–408 [CrossRef] [PubMed].
    [Google Scholar]
  35. Sharma P., Verma M., Bala K., Nigam A., Lal R.. ( 2010;). Sphingopyxis ummariensis sp. nov., isolated from a hexachlorocyclohexane dump site. Int J Syst Evol Microbiol 60: 780–784 [CrossRef] [PubMed].
    [Google Scholar]
  36. Singh A., Lal R.. ( 2009;). Sphingobium ummariense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium, isolated from HCH-contaminated soil. Int J Syst Evol Microbiol 59: 162–166 [CrossRef] [PubMed].
    [Google Scholar]
  37. Singh A. K., Garg N., Sangwan N., Negi V., Kumar R., Vikram S., Lal R.. ( 2013;). Pontibacter ramchanderi sp. nov., isolated from hexachlorocyclohexane-contaminated pond sediment. Int J Syst Evol Microbiol 63: 2829–2834 [CrossRef] [PubMed].
    [Google Scholar]
  38. Singh A. K., Garg N., Lata P., Kumar R., Negi V., Vikram S., Lal R.. ( 2014;). Pontibacter indicus sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol 64: 254–259 [CrossRef] [PubMed].
    [Google Scholar]
  39. Singh A. K., Garg N., Lal R.. ( 2015;). Pontibacter chinhatensis sp. nov., isolated from pond sediment containing discarded hexachlorocyclohexane isomer waste. Int J Syst Evol Microbiol 65: 2248–2254 [CrossRef] [PubMed].
    [Google Scholar]
  40. Sun Z. B., Zhang H., Yuan X. F., Wang Y. X., Feng D. M., Wang Y. H., Feng Y. J.. ( 2012;). Luteimonas cucumeris sp. nov., isolated a from cucumber leaf. Int J Syst Evol Microbiol 62: 2916–2920 [CrossRef] [PubMed].
    [Google Scholar]
  41. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  42. Verma H., Rani P., Kumar Singh A., Kumar R., Dwivedi V., Negi V., Lal R.. ( 2015;). Sphingopyxis flava sp. nov., isolated from a hexachlorocyclohexane (HCH)-contaminated soil. Int J Syst Evol Microbiol 65: 3720–3726 [CrossRef] [PubMed].
    [Google Scholar]
  43. Wang X., Yang H.-X., Zhang Y.-K., Zhu S.-J., Liu X.-W., Zhang H., Zhang C.-F., Zhao C.-R., Hu G., Hong Q.. ( 2015;). Luteimonas soli sp. nov., isolated from farmland soil. Int J Syst Evol Microbiol 65: 4809–4815 [CrossRef] [PubMed].
    [Google Scholar]
  44. Wu G., Liu Y., Li Q., Du H., You J., Li H., Ke C., Zhang X., Yu J., Zhao T.. ( 2013;). Luteimonas huabeiensis sp. nov., isolated from stratum water. Int J Syst Evol Microbiol 63: 3352–3357 [CrossRef] [PubMed].
    [Google Scholar]
  45. Young C. C., Kämpfer P., Chen W. M., Yen W. S., Arun A. B., Lai W. A., Shen F. T., Rekha P. D., Lin K. Y., Chou J. H.. ( 2007;). Luteimonas composti sp. nov., a moderately thermophilic bacterium isolated from food waste. Int J Syst Evol Microbiol 57: 741–744 [CrossRef] [PubMed].
    [Google Scholar]
  46. Zhang D. C., Liu H. C., Xin Y. H., Zhou Y. G., Schinner F., Margesin R.. ( 2010;). Luteimonas terricola sp. nov., a psychrophilic bacterium isolated from soil. Int J Syst Evol Microbiol 60: 1581–1584 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000956
Loading
/content/journal/ijsem/10.1099/ijsem.0.000956
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error