1887

Abstract

A bacterial strain designated PM10 was isolated from root nodules of in Brazil. Phylogenetic analyses based on 16S rRNA gene sequences placed the isolate in the genus with its closest relatives being CCUG 53270 and YN2 with 95.6 and 95.9 % 16S rRNA gene sequence similarity, respectively. The isolate was a Gram-stain-variable, motile, sporulating rod that was catalase-negative and oxidase-positive. Caseinase was positive, amylase was weakly positive and gelatinase was negative. Growth was supported by many carbohydrates and organic acids as carbon sources. MK-7 was the only menaquinone detected and anteiso-C was the major fatty acid. Major polar lipids were diphosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol and two unidentified lipids. -Diaminopimelic acid was detected in the peptidoglycan. The DNA G+C content was 52.9 mol%. Phylogenetic, chemotaxonomic and phenotypic analyses showed that strain PM10 should be considered representative of a novel species of the genus , for which the name sp. nov. is proposed. The type strain is PM10 ( = LMG 28691 = CECT 8827).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000953
2016-04-01
2020-08-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/4/1838.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000953&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  2. Baik K. S., Lim C. H., Choe H. N., Kim E. M., Seong C. N.. 2011; Paenibacillus rigui sp. nov., isolated from a freshwater wetland. Int J Syst Evol Microbiol61:529–534 [CrossRef][PubMed]
    [Google Scholar]
  3. Carro L., Flores-Félix J. D., Cerda-Castillo E., Ramírez-Bahena M. H., Igual J. M., Tejedor C., Velázquez E., Peix A.. 2013; Paenibacillus endophyticus sp. nov., isolated from nodules of Cicer arietinum . Int J Syst Evol Microbiol63:4433–4438 [CrossRef][PubMed]
    [Google Scholar]
  4. Carro L., Flores-Félix J. D., Ramírez-Bahena M. H., García-Fraile P., Martínez-Hidalgo P., Igual J. M., Tejedor C., Peix A., Velázquez E.. 2014; Paenibacillus lupini sp. nov., isolated from nodules of Lupinus albus . Int J Syst Evol Microbiol64:3028–3033 [CrossRef][PubMed]
    [Google Scholar]
  5. Chun J., Goodfellow M.. 1995; A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol45:240–245 [CrossRef][PubMed]
    [Google Scholar]
  6. Claus D., Berkeley R. C. W.. 1986; Genus Bacillus Cohn 1872, 174AL . In Bergey's Manual of Systematic Bacteriologyvol. 2 pp1105–1139Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G.. Baltimore, MD: Williams & Wilkins;
    [Google Scholar]
  7. Doetsch R. N.. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology pp21–33Edited by Gerdhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  8. Glaeser S. P., Falsen E., Busse H. J., Kämpfer P.. 2013; Paenibacillus vulneris sp. nov., isolated from a necrotic wound. Int J Syst Evol Microbiol63:777–782 [CrossRef][PubMed]
    [Google Scholar]
  9. Kämpfer P., Rosselló-Mora R., Falsen E., Busse H.-J., Tindall B. J.. 2006; Cohnella thermotolerans gen. nov., sp. nov., and classification of ‘Paenibacillus hongkongensis’ as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol56:781–786 [CrossRef][PubMed]
    [Google Scholar]
  10. Khianngam S., Tanasupawat S., Akaracharanya A., Kim K. K., Lee K. C., Lee J. S.. 2011; Paenibacillus xylanisolvens sp. nov., a xylan-degrading bacterium from soil. Int J Syst Evol Microbiol61:160–164 [CrossRef][PubMed]
    [Google Scholar]
  11. Kim D. S., Bae C. Y., Jeon J. J., Chun S. J., Oh H. W., Hong S. G., Baek K. S., Moon E. Y., Bae K. S.. 2004; Paenibacillus elgii sp. nov., with broad antimicrobial activity. Int J Syst Evol Microbiol54:2031–2035 [CrossRef][PubMed]
    [Google Scholar]
  12. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  13. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  14. Logan N. A., Berge O., Bishop A. H., Busse H. J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L., other authors. 2009; Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol59:2114–2121 [CrossRef][PubMed]
    [Google Scholar]
  15. Mandel M., Marmur J.. 1968; Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol12B:195–206 [CrossRef]
    [Google Scholar]
  16. Niu L., Tang T., Ma Z., Song L., Zhang K., Chen Y., Hua Z., Hu X., Zhao M., Chen Y., Hua Z., Hu X., Zhao M.. 2015; [CrossRef][PubMed] Paenibacillus yunnanensis sp. nov., isolated from Pu'er tea. Int J Syst Evol Microbiol
    [Google Scholar]
  17. Priest F. G.. 2009; Genus I. Paenibacillus . In Bergey's Manual of Systematic Bacteriology, 2nd edn.vol. 2 pp269–296Edited by De Vos P., Garrity G., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K. H., Whitman W. B.. New York: Springer;
    [Google Scholar]
  18. Rhuland L. E., Work E., Denman R. F., Hoare D. S.. 1955; The behaviour of the isomers of α,ϵ-diaminopimelic acid on paper chromatograms. J Am Chem Soc77:4844–4846 [CrossRef]
    [Google Scholar]
  19. Rivas R., García-Fraile P., Mateos P. F., Martínez-Molina E., Velázquez E.. 2007; Characterization of xylanolytic bacteria present in the bract phyllosphere of the date palm Phoenix dactylifera . Lett Appl Microbiol44:181–187 [CrossRef][PubMed]
    [Google Scholar]
  20. Rogers J. S., Swofford D. L.. 1998; A fast method for approximating maximum likelihoods of phylogenetic trees from nucleotide sequences. Syst Biol47:77–89 [CrossRef][PubMed]
    [Google Scholar]
  21. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  22. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  23. Schumann P.. 2011; Peptidoglycan Structure. Methods Microbiol38:101–129 [CrossRef]
    [Google Scholar]
  24. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K.. 1997; Transfer of Bacillus alginolyticus. Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus . Int J Syst Bacteriol47:289–298 [CrossRef][PubMed]
    [Google Scholar]
  25. Silveira Funch L., Maciel Barroso G.. 1999; Revisão taxonômica do gênero Periandra Mart. ex Benth. (Leguminosae, Papilionoideae, Phaseoleae). Rev Bras Bot22:339–356 (in Portuguese) [CrossRef]
    [Google Scholar]
  26. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  27. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  28. Tindall B. J.. 1990; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett66:199–202 [CrossRef]
    [Google Scholar]
  29. Valverde A., Fterich A., Mahdhi M., Ramírez-Bahena M. H., Caviedes M. A., Mars M., Velázquez E., Rodríguez-Llorente I. D.. 2010; Paenibacillus prosopidis sp. nov., isolated from the nodules of Prosopis farcta . Int J Syst Evol Microbiol60:2182–2186 [CrossRef][PubMed]
    [Google Scholar]
  30. Velázquez E., Martínez-Hidalgo P., Carro L., Alonso P., Peix A., Trujillo M. E., Martínez-Molina E.. 2013; Nodular endophytes: an untapped diversity. In Beneficial Plant-Microbial Interactions: Ecology and Applications pp215–235Edited by Rodelas-González M. B., González-López J.. Boca Raton, FL: CRC Press; [CrossRef]
    [Google Scholar]
  31. Vincent J. M.. 1970; The cultivation, isolation and maintenance of rhizobia. In A Manual for the Practical Study of the Root-Nodule Bacteria pp1–13Edited by Vincent J. M.. Oxford: Blackwell Scientific;
    [Google Scholar]
  32. Yoon J.-H., Seo W.-T., Shin Y. K., Kho Y. H., Kang K. H., Park Y.-H.. 2002; Paenibacillus chinjuensis sp. nov., a novel exopolysaccharide‐producing bacterium. Int J Syst Evol Microbiol52:415–421[PubMed][CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000953
Loading
/content/journal/ijsem/10.1099/ijsem.0.000953
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error