1887

Abstract

A bacterial strain designated PM10 was isolated from root nodules of in Brazil. Phylogenetic analyses based on 16S rRNA gene sequences placed the isolate in the genus with its closest relatives being CCUG 53270 and YN2 with 95.6 and 95.9 % 16S rRNA gene sequence similarity, respectively. The isolate was a Gram-stain-variable, motile, sporulating rod that was catalase-negative and oxidase-positive. Caseinase was positive, amylase was weakly positive and gelatinase was negative. Growth was supported by many carbohydrates and organic acids as carbon sources. MK-7 was the only menaquinone detected and anteiso-C was the major fatty acid. Major polar lipids were diphosphatidylglycerol, phosphatidylmonomethylethanolamine, phosphatidylethanolamine, phosphatidylglycerol and two unidentified lipids. -Diaminopimelic acid was detected in the peptidoglycan. The DNA G+C content was 52.9 mol%. Phylogenetic, chemotaxonomic and phenotypic analyses showed that strain PM10 should be considered representative of a novel species of the genus , for which the name sp. nov. is proposed. The type strain is PM10 ( = LMG 28691 = CECT 8827).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000953
2016-04-01
2022-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/4/1838.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000953&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [View Article][PubMed]
    [Google Scholar]
  2. Baik K. S., Lim C. H., Choe H. N., Kim E. M., Seong C. N. 2011; Paenibacillus rigui sp. nov., isolated from a freshwater wetland. Int J Syst Evol Microbiol 61:529–534 [View Article][PubMed]
    [Google Scholar]
  3. Carro L., Flores-Félix J. D., Cerda-Castillo E., Ramírez-Bahena M. H., Igual J. M., Tejedor C., Velázquez E., Peix A. 2013; Paenibacillus endophyticus sp. nov., isolated from nodules of Cicer arietinum . Int J Syst Evol Microbiol 63:4433–4438 [View Article][PubMed]
    [Google Scholar]
  4. Carro L., Flores-Félix J. D., Ramírez-Bahena M. H., García-Fraile P., Martínez-Hidalgo P., Igual J. M., Tejedor C., Peix A., Velázquez E. 2014; Paenibacillus lupini sp. nov., isolated from nodules of Lupinus albus . Int J Syst Evol Microbiol 64:3028–3033 [View Article][PubMed]
    [Google Scholar]
  5. Chun J., Goodfellow M. 1995; A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45:240–245 [View Article][PubMed]
    [Google Scholar]
  6. Claus D., Berkeley R. C. W. 1986; Genus Bacillus Cohn 1872, 174AL . In Bergey's Manual of Systematic Bacteriology vol. 2 pp 1105–1139Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore, MD: Williams & Wilkins;
    [Google Scholar]
  7. Doetsch R. N. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology pp 21–33Edited by Gerdhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  8. Glaeser S. P., Falsen E., Busse H. J., Kämpfer P. 2013; Paenibacillus vulneris sp. nov., isolated from a necrotic wound. Int J Syst Evol Microbiol 63:777–782 [View Article][PubMed]
    [Google Scholar]
  9. Kämpfer P., Rosselló-Mora R., Falsen E., Busse H.-J., Tindall B. J. 2006; Cohnella thermotolerans gen. nov., sp. nov., and classification of ‘Paenibacillus hongkongensis’ as Cohnella hongkongensis sp. nov. Int J Syst Evol Microbiol 56:781–786 [View Article][PubMed]
    [Google Scholar]
  10. Khianngam S., Tanasupawat S., Akaracharanya A., Kim K. K., Lee K. C., Lee J. S. 2011; Paenibacillus xylanisolvens sp. nov., a xylan-degrading bacterium from soil. Int J Syst Evol Microbiol 61:160–164 [View Article][PubMed]
    [Google Scholar]
  11. Kim D. S., Bae C. Y., Jeon J. J., Chun S. J., Oh H. W., Hong S. G., Baek K. S., Moon E. Y., Bae K. S. 2004; Paenibacillus elgii sp. nov., with broad antimicrobial activity. Int J Syst Evol Microbiol 54:2031–2035 [View Article][PubMed]
    [Google Scholar]
  12. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  13. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  14. Logan N. A., Berge O., Bishop A. H., Busse H. J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L., other authors. 2009; Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59:2114–2121 [View Article][PubMed]
    [Google Scholar]
  15. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance-temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206 [View Article]
    [Google Scholar]
  16. Niu L., Tang T., Ma Z., Song L., Zhang K., Chen Y., Hua Z., Hu X., Zhao M., Chen Y., Hua Z., Hu X., Zhao M. 2015 [View Article][PubMed] Paenibacillus yunnanensis sp. nov., isolated from Pu'er tea. Int J Syst Evol Microbiol
    [Google Scholar]
  17. Priest F. G. 2009; Genus I. Paenibacillus . In Bergey's Manual of Systematic Bacteriology, 2nd edn. vol. 2 pp 269–296Edited by De Vos P., Garrity G., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K. H., Whitman W. B. New York: Springer;
    [Google Scholar]
  18. Rhuland L. E., Work E., Denman R. F., Hoare D. S. 1955; The behaviour of the isomers of α,ϵ-diaminopimelic acid on paper chromatograms. J Am Chem Soc 77:4844–4846 [View Article]
    [Google Scholar]
  19. Rivas R., García-Fraile P., Mateos P. F., Martínez-Molina E., Velázquez E. 2007; Characterization of xylanolytic bacteria present in the bract phyllosphere of the date palm Phoenix dactylifera . Lett Appl Microbiol 44:181–187 [View Article][PubMed]
    [Google Scholar]
  20. Rogers J. S., Swofford D. L. 1998; A fast method for approximating maximum likelihoods of phylogenetic trees from nucleotide sequences. Syst Biol 47:77–89 [View Article][PubMed]
    [Google Scholar]
  21. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  22. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  23. Schumann P. 2011; Peptidoglycan Structure. Methods Microbiol 38:101–129 [View Article]
    [Google Scholar]
  24. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K. 1997; Transfer of Bacillus alginolyticus. Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus . Int J Syst Bacteriol 47:289–298 [View Article][PubMed]
    [Google Scholar]
  25. Silveira Funch L., Maciel Barroso G. 1999; Revisão taxonômica do gênero Periandra Mart. ex Benth. (Leguminosae, Papilionoideae, Phaseoleae). Rev Bras Bot 22:339–356 (in Portuguese) [View Article]
    [Google Scholar]
  26. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  27. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  28. Tindall B. J. 1990; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [View Article]
    [Google Scholar]
  29. Valverde A., Fterich A., Mahdhi M., Ramírez-Bahena M. H., Caviedes M. A., Mars M., Velázquez E., Rodríguez-Llorente I. D. 2010; Paenibacillus prosopidis sp. nov., isolated from the nodules of Prosopis farcta . Int J Syst Evol Microbiol 60:2182–2186 [View Article][PubMed]
    [Google Scholar]
  30. Velázquez E., Martínez-Hidalgo P., Carro L., Alonso P., Peix A., Trujillo M. E., Martínez-Molina E. 2013; Nodular endophytes: an untapped diversity. In Beneficial Plant-Microbial Interactions: Ecology and Applications pp 215–235Edited by Rodelas-González M. B., González-López J. Boca Raton, FL: CRC Press; [View Article]
    [Google Scholar]
  31. Vincent J. M. 1970; The cultivation, isolation and maintenance of rhizobia. In A Manual for the Practical Study of the Root-Nodule Bacteria pp 1–13Edited by Vincent J. M. Oxford: Blackwell Scientific;
    [Google Scholar]
  32. Yoon J.-H., Seo W.-T., Shin Y. K., Kho Y. H., Kang K. H., Park Y.-H. 2002; Paenibacillus chinjuensis sp. nov., a novel exopolysaccharide‐producing bacterium. Int J Syst Evol Microbiol 52:415–421[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000953
Loading
/content/journal/ijsem/10.1099/ijsem.0.000953
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error