1887

Abstract

A Gram-reaction-positive and rod-shaped bacterium, designated KN3-8-4, was isolated from shrimp paste collected from a market in Nakhon Sri Thammarat province, Thailand. Strain KN3-8-4 was a strictly aerobic, motile bacterium that produced ellipsoidal endospores at a terminal position. The isolate grew at pH 4.5–10 (optimum pH 7.5), at 11–42 °C (optimum 37 °C) and in the presence of 0–15 % (w/v) NaCl (optimum 1–5 %). On the basis of 16S rRNA gene sequences, strain KN3-8-4 belonged to the genus Virgibacillus and showed highest similarity with Virgibacillus olivae JCM 30551 (97.85 % 16S rRNA gene sequence similarity). The diamino acid found in the cell-wall peptidoglycan was meso-diaminopimelic acid and the major isoprenoid quinone was MK-7. Strain KN3-8-4 contained anteiso-C15 : 0 and anteiso-C17 : 0 as major cellular fatty acids and had phosphatidylglycerol, diphosphatidylglycerol, two unknown phospholipids and one glycolipid as polar lipids. The DNA G+C content was 43.5 mol%. Strain KN3-8-4 showed low DNA–DNA relatedness (20.44 %) with V. olivae JCM 30551. On the basis of phenotypic and chemotaxonomic data and phylogenetic analyses, strain KN3-8-4 represents a novel species of the genus Virgibacillus for which the name Virgibacillus kapii sp. nov. is proposed. The type strain is KN3-8-4 ( = JCM 30071 = LMG 28282 = TISTR 2279 = PCU 345).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000951
2016-04-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/4/1832.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000951&mimeType=html&fmt=ahah

References

  1. Acar J. F., Goldstein F. W.. ( 1991;). Disk susceptibility testing. . In Antibiotics in Laboratory Medicine, 3rd edn., pp. 17–52. Edited by Lorian V.. Baltimore, MD: Williams & Wilkins;.
    [Google Scholar]
  2. An S. Y., Asahara M., Goto K., Kasai H., Yokota A.. ( 2007;). Virgibacillus halophilus sp. nov., spore-forming bacteria isolated from soil in Japan. Int J Syst Evol Microbiol 57: 1607–1611 [CrossRef] [PubMed].
    [Google Scholar]
  3. Arahal D. R., Márquez M. C., Volcani B. E., Schleifer K. H., Ventosa A.. ( 1999;). Bacillus marismortui sp. nov., a new moderately halophilic species from the Dead Sea. Int J Syst Bacteriol 49: 521–530 [CrossRef] [PubMed].
    [Google Scholar]
  4. Arahal D. R., Márquez M. C., Volcani B. E., Schleifer K. H., Ventosa A.. ( 2000;). Reclassification of Bacillus marismortui as Salibacillus marismortui comb. nov. Int J Syst Evol Microbiol 50: 1501–1503 [CrossRef] [PubMed].
    [Google Scholar]
  5. Barrow G. I., Feltham R. K. A.. (editors) ( 1993;). Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd edn.. Cambridge:: Cambridge University Press; [CrossRef]
    [Google Scholar]
  6. Chaijan M., Panpipat W.. ( 2012;). Darkening prevention of fermented shrimp paste by pre-soaking whole shrimp with pyrophosphate. As J food Ag-Ind 5: 163–171.
    [Google Scholar]
  7. Chuon M. R., Shiomoto M., Koyanagi T., Sasaki T., Michihata T., Chan S., Mao S., Enomoto T.. ( 2014;). Microbial and chemical properties of Cambodian traditional fermented fish products. J Sci Food Agric 94: 1124–1131 [CrossRef] [PubMed].
    [Google Scholar]
  8. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224–229 [CrossRef].
    [Google Scholar]
  9. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  10. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  11. Forbes L.. ( 1981;). Rapid flagella stain. J Clin Microbiol 13: 807–809 [PubMed].
    [Google Scholar]
  12. Heyrman J., Logan N. A., Busse H.-J., Balcaen A., Lebbe L., Rodriguez-Diaz M., Swings J., De Vos P.. ( 2003;). Virgibacillus carmonensis sp. nov., Virgibacillus necropolis sp. nov. and Virgibacillus picturae sp. nov., three novel species isolated from deteriorated mural paintings, transfer of the species of the genus salibacillus to Virgibacillus, as Virgibacillus marismortui comb. nov. and Virgibacillus salexigens comb. nov., and emended description of the genus Virgibacillus. Int J Syst Evol Microbiol 53: 501–511 [CrossRef] [PubMed].
    [Google Scholar]
  13. Hua N. P., Hamza-Chaffai A., Vreeland R. H., Isoda H., Naganuma T.. ( 2008;). Virgibacillus salarius sp. nov., a halophilic bacterium isolated from a Saharan salt lake. Int J Syst Evol Microbiol 58: 2409–2414 [CrossRef] [PubMed].
    [Google Scholar]
  14. Hucker G. J., Conn H. J.. ( 1923;). Method of Gram staining. N Y State Agric Exp Stn Tech Bull 93: 3–37.
    [Google Scholar]
  15. Kämpfer P., Kroppenstedt R. M.. ( 1996;). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42: 989–1005 [CrossRef].
    [Google Scholar]
  16. Kluge A. G., Farris J. S.. ( 1969;). Quantitative phyletics and the evolution of anurans. Syst Zool 18: 1–32 [CrossRef].
    [Google Scholar]
  17. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19: 161–207 [CrossRef].
    [Google Scholar]
  18. Lee J. S., Lim J. M., Lee K. C., Lee J. C., Park Y. H., Kim C. J.. ( 2006;). Virgibacillus koreensis sp. nov., a novel bacterium from a salt field, and transfer of Virgibacillus picturae to the genus Oceanobacillus as Oceanobacillus picturae comb. nov. with emended descriptions. Int J Syst Evol Microbiol 56: 251–257 [CrossRef] [PubMed].
    [Google Scholar]
  19. Leifson E.. ( 1963;). Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85: 1183–1184 [PubMed].
    [Google Scholar]
  20. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  21. Namwong S., Tanasupawat S., Smitinont T., Visessanguan W., Kudo T., Itoh T.. ( 2005;). Isolation of Lentibacillus salicampi strains and Lentibacillus juripiscarius sp. nov. from fish sauce in Thailand. Int J Syst Evol Microbiol 55: 315–320 [CrossRef] [PubMed].
    [Google Scholar]
  22. Pakdeeto A., Tanasupawat S., Thawai C., Moonmangmee S., Kudo T., Itoh T.. ( 2007a;). Lentibacillus kapialis sp. nov., from fermented shrimp paste in Thailand. Int J Syst Evol Microbiol 57: 364–369 [CrossRef] [PubMed].
    [Google Scholar]
  23. Pakdeeto A., Tanasupawat S., Thawai C., Moonmangmee S., Kudo T., Itoh T.. ( 2007b;). Salinicoccus siamensis sp. nov., isolated from fermented shrimp paste in Thailand. Int J Syst Evol Microbiol 57: 2004–2008 [CrossRef] [PubMed].
    [Google Scholar]
  24. Quesada T., Aguilera M., Morillo J. A., Ramos-Cormenzana A., Monteoliva-Sánchez M.. ( 2007;). Virgibacillus olivae sp. nov., isolated from waste wash-water from processing of Spanish-style green olives. Int J Syst Evol Microbiol 57: 906–910 [CrossRef] [PubMed].
    [Google Scholar]
  25. Saito H., Miura K. I.. ( 1963;). Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72: 619–629 [CrossRef] [PubMed].
    [Google Scholar]
  26. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  27. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  28. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25: 125–128 [CrossRef].
    [Google Scholar]
  29. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  30. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  31. Thornley M. J.. ( 1960;). The differentiation of Pseudomonas from other Gram-negative bacteria on the basis of arginine metabolism. J Appl Bacteriol 23: 37–52 [CrossRef].
    [Google Scholar]
  32. Wainø M., Tindall B. J., Schumann P., Ingvorsen K.. ( 1999;). Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov. Int J Syst Bacteriol 49: 821–831 [CrossRef] [PubMed].
    [Google Scholar]
  33. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on the reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  34. Wittanalai S., Rakariyatham N., Deming R. L.. ( 2011;). Volatile compounds of vegetarian soybean kapi, a fermented Thai food condiment. Afr J Biotechnol 10: 821–830.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000951
Loading
/content/journal/ijsem/10.1099/ijsem.0.000951
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error