1887

Abstract

A Gram-stain-negative bacterium, strain D11M-2, was isolated from a saline lake (Lake Dasugan) in Qaidam basin, Qinghai Province, China. Its taxonomic position was determined by using a polyphasic approach. Cells were non-spore-forming rods, 0.5–0.7 μm wide and 1.2–1.6 μm long, and motile by means of a single subpolar or lateral flagellum. Strain D11M-2 was strictly heterotrophic and aerobic, and catalase- and oxidase-positive. Growth was observed in the presence of 0–14.0 % (w/v) NaCl (optimum, 2.0 %), and at 10–35 °C (optimum, 30 °C) and pH 6.0–10.5 (optimum, pH 8.0). Strain D11M-2 contained Q-10 and Q-11 as the respiratory quinones and three unknown glycolipids as the major polar lipids. The major cellular fatty acids (>10.0 %) were summed feature 8 (Cω7 and/or Cω6) and C. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain D11M-2 belonged to the family and formed a separate lineage that was independent of the two genera within the family . Strain D11M-2 exhibited 92.8–93.4 % 16S rRNA gene sequence similarity to members of the genus (highest to HTCC 2503), and 90.2 % to a member of the genus . The DNA G+C content was 59 mol% ( ). Based on the phenotypic, chemotaxonomic and phylogenetic data, strain D11M-2 is considered to represent a novel species of a new genus in the family , for which the name gen. nov., sp. nov. is proposed. The type strain of is D11M-2 ( = CGMCC 1.12921 = KCTC 42673).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000950
2016-04-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/4/1813.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000950&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  2. Arun A. B., Chen W. M., Lai W. A., Chou J. H., Rekha P. D., Shen F. T., Singh S., Young C. C.. 2009; Parvularcula lutaonensis sp. nov., a moderately thermotolerant marine bacterium isolated from a coastal hot spring. Int J Syst Evol Microbiol59:998–1001 [CrossRef][PubMed]
    [Google Scholar]
  3. Biebl H., Pukall R., Lünsdorf H., Schulz S., Allgaier M., Tindall B. J., Wagner-Döbler I.. 2007; Description of Labrenzia alexandrii gen. nov., sp. nov., a novel alphaproteobacterium containing bacteriochlorophyll a, and a proposal for reclassification of Stappia aggregata as Labrenzia aggregata comb. nov., of Stappia marina as Labrenzia marina comb. nov. and of Stappia alba as Labrenzia alba comb. nov., and emended descriptions of the genera Pannonibacter, Stappia and Roseibium, and of the species Roseibium denhamense and Roseibium hamelinense. Int J Syst Evol Microbiol57:1095–1107 [CrossRef][PubMed]
    [Google Scholar]
  4. Cavalcanti G., Thompson F.. 2014; The family Parvularculaceae. In The Prokaryotes pp349–354Edited by Rosenberg E., DeLong E., Lory S., Stackebrandt E., Thompson F.. Berlin: Springer; [CrossRef]
    [Google Scholar]
  5. Cho J. C., Giovannoni S. J.. 2003; Parvularcula bermudensis gen. nov., sp. nov., a marine bacterium that forms a deep branch in the α-Proteobacteria. Int J Syst Evol Microbiol53:1031–1036 [CrossRef][PubMed]
    [Google Scholar]
  6. Dong X. Z., Cai M. Y.. 2001; Determinative Manual for Routine Bacteriology Beijing: Scientific Press (English translation);
    [Google Scholar]
  7. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  8. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  9. Kates M.. 1986; Techniques of Lipidology, 2nd edn. Amsterdam: Elsevier;
    [Google Scholar]
  10. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  11. Kimura M.. 1983; The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  12. Komagata K., Suzuki K.. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol19:161–207 [CrossRef]
    [Google Scholar]
  13. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A., other authors. 2007; clustal w and clustal_x version 2.0. Bioinformatics23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  14. Li S., Tang K., Liu K., Yu C. P., Jiao N.. 2014a; Parvularcula oceani [corrected] sp. nov., isolated from deep-sea water of the Southeastern Pacific Ocean. Antonie van Leeuwenhoek105:245–251 [CrossRef][PubMed]
    [Google Scholar]
  15. Li S., Tang K., Liu K., Yu C. P., Jiao N.. 2014b; Erratum to: Parvularcula oceanus sp. nov., isolated from deep-sea water of the Southeastern Pacific Ocean. Antonie van Leeuwenhoek105:267 [CrossRef]
    [Google Scholar]
  16. Marmur J., Doty P.. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol5:109–118 [CrossRef][PubMed]
    [Google Scholar]
  17. Nokhal T. H., Schlegel H. G.. 1983; Taxonomic study of Paracoccus denitrificans. Int J Syst Bacteriol33:26–37 [CrossRef]
    [Google Scholar]
  18. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  19. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  20. Tindall B. J., Rosselló-Móra R., Busse H. J., Ludwig W., Kämpfer P.. 2010; Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol60:249–266 [CrossRef][PubMed]
    [Google Scholar]
  21. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol173:697–703[PubMed]
    [Google Scholar]
  22. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R.. 2008; The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol31:241–250 [CrossRef][PubMed]
    [Google Scholar]
  23. Yu Z., Lai Q., Li G., Shao Z.. 2013; Parvularcula dongshanensis sp. nov., isolated from soft coral. Int J Syst Evol Microbiol63:2114–2117 [CrossRef][PubMed]
    [Google Scholar]
  24. Zhen-Li Z., Xin-Qi Z., Nan W., Wen-Wu Z., Xu-Fen Z., Yi C., Min W.. 2014; Amphiplicatus metriothermophilus gen. nov., sp. nov., a thermotolerant alphaproteobacterium isolated from a hot spring. Int J Syst Evol Microbiol64:2805–2811 [CrossRef][PubMed]
    [Google Scholar]
  25. Zhong Z.-P., Liu Y., Liu H.-C., Wang F., Zhou Y.-G., Liu Z.-P.. 2014; Roseibium aquae sp. nov., isolated from a saline lake. Int J Syst Evol Microbiol64:2812–2818 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000950
Loading
/content/journal/ijsem/10.1099/ijsem.0.000950
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error