1887

Abstract

A Gram-stain-negative bacterium, strain D11M-2, was isolated from a saline lake (Lake Dasugan) in Qaidam basin, Qinghai Province, China. Its taxonomic position was determined by using a polyphasic approach. Cells were non-spore-forming rods, 0.5–0.7 μm wide and 1.2–1.6 μm long, and motile by means of a single subpolar or lateral flagellum. Strain D11M-2 was strictly heterotrophic and aerobic, and catalase- and oxidase-positive. Growth was observed in the presence of 0–14.0 % (w/v) NaCl (optimum, 2.0 %), and at 10–35 °C (optimum, 30 °C) and pH 6.0–10.5 (optimum, pH 8.0). Strain D11M-2 contained Q-10 and Q-11 as the respiratory quinones and three unknown glycolipids as the major polar lipids. The major cellular fatty acids (>10.0 %) were summed feature 8 (Cω7 and/or Cω6) and C. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain D11M-2 belonged to the family and formed a separate lineage that was independent of the two genera within the family . Strain D11M-2 exhibited 92.8–93.4 % 16S rRNA gene sequence similarity to members of the genus (highest to HTCC 2503), and 90.2 % to a member of the genus . The DNA G+C content was 59 mol% ( ). Based on the phenotypic, chemotaxonomic and phylogenetic data, strain D11M-2 is considered to represent a novel species of a new genus in the family , for which the name gen. nov., sp. nov. is proposed. The type strain of is D11M-2 ( = CGMCC 1.12921 = KCTC 42673).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000950
2016-04-01
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/4/1813.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000950&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [View Article][PubMed]
    [Google Scholar]
  2. Arun A. B., Chen W. M., Lai W. A., Chou J. H., Rekha P. D., Shen F. T., Singh S., Young C. C. 2009; Parvularcula lutaonensis sp. nov., a moderately thermotolerant marine bacterium isolated from a coastal hot spring. Int J Syst Evol Microbiol 59:998–1001 [View Article][PubMed]
    [Google Scholar]
  3. Biebl H., Pukall R., Lünsdorf H., Schulz S., Allgaier M., Tindall B. J., Wagner-Döbler I. 2007; Description of Labrenzia alexandrii gen. nov., sp. nov., a novel alphaproteobacterium containing bacteriochlorophyll a, and a proposal for reclassification of Stappia aggregata as Labrenzia aggregata comb. nov., of Stappia marina as Labrenzia marina comb. nov. and of Stappia alba as Labrenzia alba comb. nov., and emended descriptions of the genera Pannonibacter, Stappia and Roseibium, and of the species Roseibium denhamense and Roseibium hamelinense . Int J Syst Evol Microbiol 57:1095–1107 [View Article][PubMed]
    [Google Scholar]
  4. Cavalcanti G., Thompson F. 2014; The family Parvularculaceae . In The Prokaryotes pp 349–354Edited by Rosenberg E., DeLong E., Lory S., Stackebrandt E., Thompson F. Berlin: Springer; [View Article]
    [Google Scholar]
  5. Cho J. C., Giovannoni S. J. 2003; Parvularcula bermudensis gen. nov., sp. nov., a marine bacterium that forms a deep branch in the α-Proteobacteria . Int J Syst Evol Microbiol 53:1031–1036 [View Article][PubMed]
    [Google Scholar]
  6. Dong X. Z., Cai M. Y. 2001 Determinative Manual for Routine Bacteriology Beijing: Scientific Press (English translation);
    [Google Scholar]
  7. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  8. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  9. Kates M. 1986 Techniques of Lipidology, 2nd edn. Amsterdam: Elsevier;
    [Google Scholar]
  10. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  11. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [View Article]
    [Google Scholar]
  12. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207 [View Article]
    [Google Scholar]
  13. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A., other authors. 2007; clustal w and clustal_x version 2.0. Bioinformatics 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  14. Li S., Tang K., Liu K., Yu C. P., Jiao N. 2014a; Parvularcula oceani [corrected] sp. nov., isolated from deep-sea water of the Southeastern Pacific Ocean. Antonie van Leeuwenhoek 105:245–251 [View Article][PubMed]
    [Google Scholar]
  15. Li S., Tang K., Liu K., Yu C. P., Jiao N. 2014b; Erratum to: Parvularcula oceanus sp. nov., isolated from deep-sea water of the Southeastern Pacific Ocean. Antonie van Leeuwenhoek 105:267 [View Article]
    [Google Scholar]
  16. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [View Article][PubMed]
    [Google Scholar]
  17. Nokhal T. H., Schlegel H. G. 1983; Taxonomic study of Paracoccus denitrificans . Int J Syst Bacteriol 33:26–37 [View Article]
    [Google Scholar]
  18. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  19. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  20. Tindall B. J., Rosselló-Móra R., Busse H. J., Ludwig W., Kämpfer P. 2010; Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266 [View Article][PubMed]
    [Google Scholar]
  21. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703[PubMed]
    [Google Scholar]
  22. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R. 2008; The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250 [View Article][PubMed]
    [Google Scholar]
  23. Yu Z., Lai Q., Li G., Shao Z. 2013; Parvularcula dongshanensis sp. nov., isolated from soft coral. Int J Syst Evol Microbiol 63:2114–2117 [View Article][PubMed]
    [Google Scholar]
  24. Zhen-Li Z., Xin-Qi Z., Nan W., Wen-Wu Z., Xu-Fen Z., Yi C., Min W. 2014; Amphiplicatus metriothermophilus gen. nov., sp. nov., a thermotolerant alphaproteobacterium isolated from a hot spring. Int J Syst Evol Microbiol 64:2805–2811 [View Article][PubMed]
    [Google Scholar]
  25. Zhong Z.-P., Liu Y., Liu H.-C., Wang F., Zhou Y.-G., Liu Z.-P. 2014; Roseibium aquae sp. nov., isolated from a saline lake. Int J Syst Evol Microbiol 64:2812–2818 [View Article][PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.000950
Loading
/content/journal/ijsem/10.1099/ijsem.0.000950
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error