1887

Abstract

A Gram-stain-negative, non-motile, non-spore-forming, non-pigmented, oxidase- and catalase-positive bacterial strain, designated BIc20019, was isolated from the ice core of Austre Lovénbreen in Ny-Ålesund, Svalbard. The temperature and NaCl ranges for growth were 4–34 °C (optimum, 25–29 °C) and 0–8 % (w/v) (optimum, 2–4 %). Analysis of the 16S rRNA gene sequence indicated that strain BIc20019 belonged to the genus and was closely related to 273-4, K5, ‘’ BSw21516B, LMG 21280, LMG 21276 and MD17 at greater than 99 % similarity. Phylogenetic analysis based on gene sequences revealed highest similarity (93.6 %) to MD17. However, DNA hybridization experiments revealed a low level of DNA–DNA relatedness ( < 59 %) between strain BIc20019 and its closest relatives. Strain BIc20019 contained ubiquinone-8 (Q-8) as the predominant respiratory quinone, and Cω9 and summed feature 3 (Cω7 and/or iso-C 2-OH) as the major fatty acids. It had a DNA G+C content of 46.3 mol%. The polar lipid profile of strain BIc20019 was mainly composed of phosphatidylglycerol, phosphatidylethanolamine and diphosphatidylglycerol. Owing to the differences in phenotypic and chemotaxonomic characteristics, phylogenetic analysis based on 16S rRNA gene and gene sequences, and DNA–DNA relatedness data, the isolate merits classification within a novel species for which the name sp. nov. is proposed. The type strain is BIc20019 ( = KCTC 42280 = CCTCC AB 2014019).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000939
2016-04-01
2020-08-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/4/1792.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000939&mimeType=html&fmt=ahah

References

  1. Bakermans C., Ayala-del-Río H. L., Ponder M. A., Vishnivetskaya T., Gilichinsky D., Thomashow M. F., Tiedje J. M.. 2006; Psychrobacter cryohalolentis sp. nov. and Psychrobacter arcticus sp. nov., isolated from Siberian permafrost. Int J Syst Evol Microbiol56:1285–1291 [CrossRef][PubMed]
    [Google Scholar]
  2. Bowers R. M., Lauber C. L., Wiedinmyer C., Hamady M., Hallar A. G., Fall R., Knight R., Fierer N.. 2009; Characterization of airborne microbial communities at a high-elevation site and their potential to act as atmospheric ice nuclei. Appl Environ Microbiol75:5121–5130 [CrossRef][PubMed]
    [Google Scholar]
  3. Bowman J. P., Cavanagh J., Austin J. J., Sanderson K.. 1996; Novel Psychrobacter species from Antarctic ornithogenic soils. Int J Syst Bacteriol46:841–848 [CrossRef][PubMed]
    [Google Scholar]
  4. Bozal N., Montes M. J., Tudela E., Guinea J.. 2003; Characterization of several Psychrobacter strains isolated from Antarctic environments and description of Psychrobacter luti sp. nov. and Psychrobacter fozii sp. nov. Int J Syst Evol Microbiol53:1093–1100 [CrossRef][PubMed]
    [Google Scholar]
  5. Fahlgren C., Hagström A., Nilsson D., Zweifel U. L.. 2010; Annual variations in the diversity, viability, and origin of airborne bacteria. Appl Environ Microbiol76:3015–3025 [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  7. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  8. Huss V. A., Festl H., Schleifer K. H.. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  9. Juni E., Heym G. A.. 1986; Psychrobacter immobilis gen. nov., sp. nov.: genospecies composed of gram-negative, aerobic, oxidase-positive coccobacilli. Int J Syst Bacteriol36:388–391 [CrossRef]
    [Google Scholar]
  10. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  11. Lee Y. K., Sung K. C., Yim J. H., Park K. J., Chung H., Lee H. K.. 2005; Isolation of protease-producing Arctic marine bacteria. Ocean Polar Res27:215–219 [CrossRef]
    [Google Scholar]
  12. Maruyama A., Honda D., Yamamoto H., Kitamura K., Higashihara T.. 2000; Phylogenetic analysis of psychrophilic bacteria isolated from the Japan Trench, including a description of the deep-sea species Psychrobacter pacificensis sp. nov. Int J Syst Evol Microbiol50:835–846 [CrossRef][PubMed]
    [Google Scholar]
  13. MIDI 1999; Sherlock Microbial Identification System Operation Manual, version 3.0 Newark, DE: MIDI Inc;
    [Google Scholar]
  14. Rodrigues D. F., da C Jesus E., Ayala-Del-Río H. L., Pellizari V. H., Gilichinsky D., Sepulveda-Torres L., Tiedje J. M.. 2009; Biogeography of two cold-adapted genera: Psychrobacter and Exiguobacterium. ISME J3:658–665 [CrossRef][PubMed]
    [Google Scholar]
  15. Romanenko L. A., Lysenko A. M., Rohde M., Mikhailov V. V., Stackebrandt E.. 2004; Psychrobacter maritimus sp. nov. and Psychrobacter arenosus sp. nov., isolated from coastal sea ice and sediments of the Sea of Japan. Int J Syst Evol Microbiol54:1741–1745 [CrossRef][PubMed]
    [Google Scholar]
  16. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  17. Sly L. I., Blackall L. L., Kraat P. C., Tian-Shen T., Sangkhobol V.. 1986; The use of second derivative plots for the determination of mol% guanine plus cytosine of DNA by the thermal denaturation method. J Microbiol Methods5:139–156 [CrossRef]
    [Google Scholar]
  18. Srinivas T. N. R., Singh S. M., Pradhan S., Pratibha M. S., Kishore K. H., Singh A. K., Begum Z., Prabagaran S. R., Reddy G. S. N., Shivaji S.. 2011; Comparison of bacterial diversity in proglacial soil from Kafni Glacier, Himalayan Mountain ranges, India, with the bacterial diversity of other glaciers in the world. Extremophiles15:673–690 [CrossRef][PubMed]
    [Google Scholar]
  19. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  20. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  21. Tindall B. J.. 1990; Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett66:199–202 [CrossRef]
    [Google Scholar]
  22. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., other authors. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464 [CrossRef]
    [Google Scholar]
  23. Xie C. H., Yokota A.. 2003; Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol49:345–349 [CrossRef][PubMed]
    [Google Scholar]
  24. Yumoto I., Hirota K., Sogabe Y., Nodasaka Y., Yokota Y., Hoshino T.. 2003; Psychrobacter okhotskensis sp. nov., a lipase-producing facultative psychrophile isolated from the coast of the Okhotsk Sea. Int J Syst Evol Microbiol53:1985–1989 [CrossRef][PubMed]
    [Google Scholar]
  25. Zeng Y., Liu W., Li H., Yu Y., Chen B.. 2007; Effect of restriction endonucleases on assessment of biodiversity of cultivable polar marine planktonic bacteria by amplified ribosomal DNA restriction analysis. Extremophiles11:685–692 [CrossRef][PubMed]
    [Google Scholar]
  26. Zeng Y., Zheng T., Yu Y., Chen B., He J.. 2010; Relationships between Arctic and Antarctic Shewanella strains evaluated by a polyphasic taxonomic approach. Polar Biol33:531–541 [CrossRef]
    [Google Scholar]
  27. Zeng Y. X., Yu Y., Li H. R., Luo W.. 2015; Psychrobacter fjordensis sp. nov., a psychrotolerant bacterium isolated from an Arctic fjord in Svalbard. Antonie van Leeuwenhoek108:1283–1292 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000939
Loading
/content/journal/ijsem/10.1099/ijsem.0.000939
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error