1887

Abstract

A Gram-stain-negative, pink bacterial strain, designated PR0008K, was isolated from an automobile evaporator core in Korea. The cells were obligately aerobic and rod-shaped. The strain grew at 10–40 °C (optimum, 20 °C), at pH 5–8 (optimum, 7), and in the presence of 0–1.5 % (w/v) NaCl. Phylogenetically, the strain was closely related to members of the genus Mucilaginibacter (93.4–97.0 % 16S rRNA sequence similarities) and showed a high sequence similarity with Mucilaginibacter litoreus BR-18, Mucilaginibacter lutimaris BR-3 and Mucilaginibacter soli R9-65 (97.0 %, 96.9 % and 96.9 % 16S rRNA sequence similarity, respectively). It contained summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0, iso-C17 : 0 3-OH and C16 : 0 as the predominant fatty acids and MK-7 as the major menaquinone. The polar lipids were phosphatidylethanolamine, one unknown aminophospholipid, two unknown aminolipids and two unknown polar lipids. The DNA G+C content of this strain was 47.4 mol%. Based on the phenotypic, genotypic and chemotaxonomic data, strain PR0008K represents a novel species in the genus Mucilaginibacter, for which the name Mucilaginibacter carri sp. nov. ( = KACC 17938 = NBRC 111539) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000938
2016-04-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/4/1754.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000938&mimeType=html&fmt=ahah

References

  1. Baik K. S., Park S. C., Kim E. M., Lim C. H., Seong C. N.. ( 2010;). Mucilaginibacter rigui sp. nov., isolated from wetland freshwater, and emended description of the genus Mucilaginibacter. Int J Syst Evol Microbiol 60: 134–139 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bernardet J. F., Nakagawa Y., Holmes B., Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes. ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52: 1049–1070 [PubMed].
    [Google Scholar]
  3. Counsell T. J., Murray R. G. E.. ( 1986;). Polar lipid profiles of the genus Deinococcus. Int J Syst Bacteriol 36: 202–206 [CrossRef].
    [Google Scholar]
  4. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  5. Fitch W. M.. ( 1971;). Toward defining course of evolution - minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  6. Gonzalez J. M., Saiz-Jimenez C.. ( 2002;). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. Environ Microbiol 4: 770–773 [CrossRef] [PubMed].
    [Google Scholar]
  7. Jeon Y., Lee S. S., Chung B. S., Kim J. M., Bae J. W., Park S. K., Jeon C. O.. ( 2009;). Mucilaginibacter oryzae sp. nov., isolated from soil of a rice paddy. Int J Syst Evol Microbiol 59: 1451–1454 [CrossRef] [PubMed].
    [Google Scholar]
  8. Jiang F., Dai J., Wang Y., Xue X., Xu M., Guo Y., Li W., Fang C., Peng F.. ( 2012;). Mucilaginibacter soli sp. nov., isolated from Arctic tundra soil. Int J Syst Evol Microbiol 62: 1630–1635 [CrossRef] [PubMed].
    [Google Scholar]
  9. Joung Y., Kim H., Kang H., Lee B. I., Ahn T. S., Joh K.. ( 2014;). Mucilaginibacter soyangensis sp. nov., isolated from a lake. Int J Syst Evol Microbiol 64: 413–419 [CrossRef] [PubMed].
    [Google Scholar]
  10. Joung Y., Kang H., Lee B. I., Kim H., Joh K., Kim K. J.. ( 2015;). Mucilaginibacter aquaedulcis sp. nov., isolated from fresh water. Int J Syst Evol Microbiol 65: 698–703 [CrossRef] [PubMed].
    [Google Scholar]
  11. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolismvol. 3, pp. 21–132. Edited by Munro H. N.. New York:: Academic Press; [CrossRef]
    [Google Scholar]
  12. Kang S. J., Jung Y. T., Oh K. H., Oh T. K., Yoon J. H.. ( 2011;). Mucilaginibacter boryungensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 61: 1549–1553 [CrossRef] [PubMed].
    [Google Scholar]
  13. Kim D. U., Ka J. O.. ( 2014;). Roseomonas soli sp. nov., isolated from an agricultural soil cultivated with Chinese cabbage (Brassica campestris). Int J Syst Evol Microbiol 64: 1024–1029 [CrossRef] [PubMed].
    [Google Scholar]
  14. Kim B. C., Lee K. H., Kim M. N., Lee J., Shin K. S.. ( 2010;). Mucilaginibacter dorajii sp. nov., isolated from the rhizosphere of Platycodon grandiflorum. FEMS Microbiol Lett 309: 130–135 [PubMed].
    [Google Scholar]
  15. Kim J. H., Kang S. J., Jung Y. T., Oh T. K., Yoon J. H.. ( 2012a;). Mucilaginibacter lutimaris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 62: 515–519 [CrossRef] [PubMed].
    [Google Scholar]
  16. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012b;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  17. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19: 161–207 [CrossRef].
    [Google Scholar]
  18. Lee H. R., Han S. I., Rhee K. H., Whang K. S.. ( 2013;). Mucilaginibacter herbaticus sp. nov., isolated from the rhizosphere of the medicinal plant Angelica sinensis. Int J Syst Evol Microbiol 63: 2787–2793 [CrossRef] [PubMed].
    [Google Scholar]
  19. Pankratov T. A., Tindall B. J., Liesack W., Dedysh S. N.. ( 2007;). Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. Int J Syst Evol Microbiol 57: 2349–2354 [CrossRef] [PubMed].
    [Google Scholar]
  20. Pruesse E., Peplies J., Glöckner F. O.. ( 2012;). SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28: 1823–1829 [CrossRef] [PubMed].
    [Google Scholar]
  21. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  22. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  23. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  24. Urai M., Aizawa T., Nakagawa Y., Nakajima M., Sunairi M.. ( 2008;). Mucilaginibacter kameinonensis sp., nov., isolated from garden soil. Int J Syst Evol Microbiol 58: 2046–2050 [CrossRef] [PubMed].
    [Google Scholar]
  25. Yoon J. H., Kang S. J., Park S., Oh T. K.. ( 2012;). Mucilaginibacter litoreus sp. nov., isolated from marine sand. Int J Syst Evol Microbiol 62: 2822–2827 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000938
Loading
/content/journal/ijsem/10.1099/ijsem.0.000938
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error