1887

Abstract

We aimed to define the taxonomic status of 40 haemolytic and/or proteolytic strains of the genus Acinetobacter which were previously classified into five putative species termed as genomic species 14BJ (n = 9), genomic species 17 (n = 9), taxon 18 (n = 7), taxon 19 (n = 6) and taxon 20 (n = 9). The strains were recovered mostly from human clinical specimens or soil and water ecosystems and were highly diverse in geographical origin and time of isolation. Comparative analysis of the rpoB and gyrB gene sequences of all strains, and the whole-genome sequences of selected strains, showed that these putative species formed five respective, well-supported clusters within a distinct clade of the genus Acinetobacter which typically, although not exclusively, encompasses strains with strong haemolytic activity. The whole-genome-based average nucleotide identity (ANIb) values supported the species status of each of these clusters. Moreover, the distinctness and coherence of the clusters were supported by whole-cell profiling based on MALDI-TOF MS. Congruent with these findings were the results of metabolic and physiological testing. We conclude that the five putative taxa represent respective novel species, for which the names Acinetobacter courvalinii sp. nov. (type strain ANC 3623 = CCUG 67960 = CIP 110480 = CCM 8635), Acinetobacter dispersus sp. nov. (type strain ANC 4105 = CCUG 67961 = CIP 110500 = CCM 8636), Acinetobacter modestus sp. nov. (type strain NIPH 236 = CCUG 67964 = CIP 110444 = CCM 8639), Acinetobacter proteolyticus sp. nov. (type strain NIPH 809 = CCUG 67965 = CIP 110482 = CCM 8640) and Acinetobacter vivianii sp. nov. (type strain NIPH 2168 = CCUG 67967 = CIP 110483 = CCM 8642) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000932
2016-04-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/4/1673.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000932&mimeType=html&fmt=ahah

References

  1. Baumann P., Doudoroff M., Stanier R. Y.. ( 1968;). A study of the Moraxella group. II. Oxidative-negative species (genus Acinetobacter). J Bacteriol 95: 1520–1541 [PubMed].
    [Google Scholar]
  2. Bouvet P. J. M., Grimont P. A. D.. ( 1986;). Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii. Int J Syst Bacteriol 36: 228–240 [CrossRef].
    [Google Scholar]
  3. Bouvet P. J. M., Jeanjean S.. ( 1989;). Delineation of new proteolytic genomic species in the genus Acinetobacter. Res Microbiol 140: 291–299 [CrossRef] [PubMed].
    [Google Scholar]
  4. Dijkshoorn L., Van Harsselaar B., Tjernberg I., Bouvet P. J. M., Vaneechoutte M.. ( 1998;). Evaluation of amplified ribosomal DNA restriction analysis for identification of Acinetobacter genomic species. Syst Appl Microbiol 21: 33–39 [CrossRef] [PubMed].
    [Google Scholar]
  5. Freiwald A., Sauer S.. ( 2009;). Phylogenetic classification and identification of bacteria by mass spectrometry. Nat Protoc 4: 732–742 [CrossRef] [PubMed].
    [Google Scholar]
  6. Guardabassi L., Dijkshoorn L., Collard J. M., Olsen J. E., Dalsgaard A.. ( 2000;). Distribution and in-vitro transfer of tetracycline resistance determinants in clinical and aquatic Acinetobacter strains. J Med Microbiol 49: 929–936 [CrossRef] [PubMed].
    [Google Scholar]
  7. Juni E.. ( 1972;). Interspecies transformation of Acinetobacter: genetic evidence for a ubiquitous genus. J Bacteriol 112: 917–931 [PubMed].
    [Google Scholar]
  8. Karah N., Haldorsen B., Hegstad K., Simonsen G. S., Sundsfjord A., Samuelsen Ø., Norwegian Study Group of Acinetobacter. ( 2011;). Species identification and molecular characterization of Acinetobacter spp. blood culture isolates from Norway. J Antimicrob Chemother 66: 738–744 [CrossRef] [PubMed].
    [Google Scholar]
  9. Krizova L., Maixnerova M., Sedo O., Nemec A.. ( 2014;). Acinetobacter bohemicus sp. nov. widespread in natural soil and water ecosystems in the Czech Republic. Syst Appl Microbiol 37: 467–473 [CrossRef] [PubMed].
    [Google Scholar]
  10. Krizova L., Maixnerova M., Sedo O., Nemec A.. ( 2015a;). Acinetobacter albensis sp. nov., isolated from natural soil and water ecosystems. Int J Syst Evol Microbiol 65: 3905–3912 [CrossRef] [PubMed].
    [Google Scholar]
  11. Krizova L., McGinnis J., Maixnerova M., Nemec M., Poirel L., Mingle L., Sedo O., Wolfgang W., Nemec A.. ( 2015b;). Acinetobacter variabilis sp. nov. (formerly DNA group 15 sensu Tjernberg & Ursing), isolated from humans and animals. Int J Syst Evol Microbiol 65: 857–863 [CrossRef] [PubMed].
    [Google Scholar]
  12. Li Y., Chang J., Guo L., Wang H.-M., Xie S., Piao C., He W.. ( 2015;). Description of Acinetobacter populi sp. nov. isolated from symptomatic bark of Populus ×  euramericana canker. Int J Syst Evol Microbiol 65: 4461–4468 [CrossRef].
    [Google Scholar]
  13. Meier-Kolthoff J. P., Auch A. F., Klenk H. P., Göker M.. ( 2013;). Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 60 [CrossRef] [PubMed].
    [Google Scholar]
  14. Nemec A., Dijkshoorn L., Ježek P.. ( 2000;). Recognition of two novel phenons of the genus Acinetobacter among non-glucose-acidifying isolates from human specimens. J Clin Microbiol 38: 3937–3941 [PubMed].
    [Google Scholar]
  15. Nemec A., Musílek M., Maixnerová M., De Baere T., van der Reijden T. J. K., Vaneechoutte M., Dijkshoorn L.. ( 2009;). Acinetobacter beijerinckii sp. nov. and Acinetobacter gyllenbergii sp. nov., haemolytic organisms isolated from humans. Int J Syst Evol Microbiol 59: 118–124 [CrossRef] [PubMed].
    [Google Scholar]
  16. Nemec A., Krizova L., Maixnerova M., Sedo O., Brisse S., Higgins P. G.. ( 2015;). Acinetobacter seifertii sp. nov., a member of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex isolated from human clinical specimens. Int J Syst Evol Microbiol 65: 934–942 [CrossRef] [PubMed].
    [Google Scholar]
  17. Richter M., Rosselló-Móra R.. ( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106: 19126–19131 [CrossRef] [PubMed].
    [Google Scholar]
  18. Šedo O., Nemec A., Krˇížová L., Kačalová M., Zdráhal Z.. ( 2013;). Improvement of MALDI-TOF MS profiling for the differentiation of species within the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. Syst Appl Microbiol 36: 572–578 [CrossRef] [PubMed].
    [Google Scholar]
  19. Tjernberg I., Ursing J.. ( 1989;). Clinical strains of Acinetobacter classified by DNA-DNA hybridization. APMIS 97: 595–605 [CrossRef] [PubMed].
    [Google Scholar]
  20. Touchon M., Cury J., Yoon E.-J., Krizova L., Cerqueira G. C., Murphy C., Feldgarden M., Wortman J., Clermont D., other authors. ( 2014;). The genomic diversification of the whole Acinetobacter genus: origins, mechanisms, and consequences. Genome Biol Evol 6: 2866–2882 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000932
Loading
/content/journal/ijsem/10.1099/ijsem.0.000932
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error