1887

Abstract

A Gram-stain-positive, non-endospore-forming, haloalkaliphilic actinobacterium, strain CK5, was isolated from a soil sample, collected at Cape King (Antarctica), and its taxonomic position was investigated by using a polyphasic approach. Cells were cocci with orange pigmentation, non-motile and grew optimally at 25 °C and pH 9.0–9.5 in the presence of 2 % (w/v) NaCl. Cellular membrane contained MK-7 (72 %) and MK-8 (28 %), and anteiso-C (64.8 %), iso-C (13.3 %), -C (9.9 %), -C (4.0 %), -C (3.7 %) as major cellular fatty acids. The DNA G+C content was 64.8 mol%. Strain CK5, based on the 16S rRNA gene sequence similarity, was most closely related to JG-241 (99.5 %), YIM 70009 (99.4 %), YIM 70081 (99.4 %), YIM 70084 (99.3 %), YIM 70097 (97.2 %), CAAS 251 (97.1 %) and CCUG 48939 (97.1 %). Strain CK5 revealed 31 % DNA–DNA relatedness with respect to DSM 15664, 29 % with respect to DSM 19081, 10 % with respect to DSM 15666 and 1 % with respect to DSM 15474, DSM 15475, DSM 17733 and DSM 19422. On the basis of 16S rRNA gene sequences, DNA–DNA hybridization and chemotaxonomic characteristics, strain CK5 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CK5 ( = DSM 27373 = JCM 19723).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000917
2016-03-01
2020-04-02
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/3/1554.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000917&mimeType=html&fmt=ahah

References

  1. Arahal D. R., Dewhirst F. E., Paster B. J., Volcani B. E., Ventosa A.. 1996; Phylogenetic analyses of some extremely halophilic archaea isolated from Dead Sea water, determined on the basis of their 16S rRNA sequences. Appl Environ Microbiol62:3779–3786[PubMed]
    [Google Scholar]
  2. Clark W. M., Lubs H. A.. 1915; The differentiation of bacteria of the Colonaerogenes family by the use of indicators. J Infect Dis17:160–173 [CrossRef]
    [Google Scholar]
  3. Collins M. D., Lawson P. A., Labrenz M., Tindall B. J., Weiss N., Hirsch P.. 2002; Nesterenkonia lacusekhoensis sp. nov., isolated from hypersaline Ekho Lake, East Antarctica, and emended description of the genus Nesterenkonia . Int J Syst Evol Microbiol52:1145–1150[PubMed]
    [Google Scholar]
  4. De Rosa M., Gambacorta A., Nicolaus B., Buonocore V., Poerio E.. 1980; Immobilized bacterial cell containing a thermostable β-galactosidase. Biotechnol Lett2:29–34 [CrossRef]
    [Google Scholar]
  5. Delgado O., Quillaguamán J., Bakhtiar S., Mattiasson B., Gessesse A., Hatti-Kaul R.. 2006; Nesterenkonia aethiopica sp. nov., an alkaliphilic, moderate halophile isolated from an Ethiopian soda lake. Int J Syst Evol Microbiol56:1229–1232 [CrossRef][PubMed]
    [Google Scholar]
  6. Dussault H. P.. 1955; An improved technique for staining red halophilic bacteria. J Bacteriol70:484–485[PubMed]
    [Google Scholar]
  7. Erbs G., Silipo A., Aslam S., De Castro C., Liparoti V., Flagiello A., Pucci P., Lanzetta R., Parrilli M., other authors. 2008; Peptidoglycan and muropeptides from pathogens Agrobacterium and Xanthomonas elicit plant innate immunity: structure and activity. Chem Biol15:438–448 [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  9. Govender L., Naidoo L., Setati M.-E.. 2013; Nesterenkonia suensis sp. nov., a haloalkaliphilic actinobacterium isolated from a salt pan. Int J Syst Evol Microbiol63:41–46 [CrossRef][PubMed]
    [Google Scholar]
  10. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  11. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  12. Kouker G., Jaeger K.-E.. 1987; Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol53:211–213[PubMed]
    [Google Scholar]
  13. Li W.-J., Chen H.-H., Zhang Y.-Q., Schumann P., Stackebrandt E., Xu L.-H., Jiang C.-L.. 2004; Nesterenkonia halotolerans sp. nov. and Nesterenkonia xinjiangensis sp. nov., actinobacteria from saline soils in the west of China. Int J Syst Evol Microbiol54:837–841 [CrossRef][PubMed]
    [Google Scholar]
  14. Li W.-J., Chen H.-H., Kim C.-J., Zhang Y.-Q., Park D.-J., Lee J.-C., Xu L.-H., Jiang C.-L.. 2005; Nesterenkonia sandarakina sp. nov. and Nesterenkonia lutea sp. nov., novel actinobacteria, and emended description of the genus Nesterenkonia . Int J Syst Evol Microbiol55:463–466 [CrossRef][PubMed]
    [Google Scholar]
  15. Li W.-J., Zhang Y.-Q., Schumann P., Liu H.-Y., Yu L.-Y., Zhang Y.-Q., Stackebrandt E., Xu L.-H., Jiang C.-L.. 2008; Nesterenkonia halophila sp. nov., a moderately halophilic, alkalitolerant actinobacterium isolated from a saline soil. Int J Syst Evol Microbiol58:1359–1363 [CrossRef][PubMed]
    [Google Scholar]
  16. Luo H.-Y., Miao L.-H., Fang C., Yang P.-L., Wang Y.-R., Shi P.-J., Yao B., Fan Y.-L.. 2008; Nesterenkonia flava sp. nov., isolated from paper-mill effluent. Int J Syst Evol Microbiol58:1927–1930 [CrossRef][PubMed]
    [Google Scholar]
  17. Luo H.-Y., Wang Y.-R., Miao L.-H., Yang P.-L., Shi P.-J., Fang C.-X., Yao B., Fan Y.-L.. 2009; Nesterenkonia alba sp. nov., an alkaliphilic actinobacterium isolated from the black liquor treatment system of a cotton pulp mill. Int J Syst Evol Microbiol59:863–868 [CrossRef][PubMed]
    [Google Scholar]
  18. Nei M., Kumar S.. 2000; Molecular Evolution and Phylogenetics New York: Oxford University Press;
    [Google Scholar]
  19. Nicolaus B., Manca M. C., Lama L., Esposito E., Gambacorta A.. 2001; Lipid modulation by environmental stresses in two models of extremophiles isolated from Antarctica. Polar Biol24:1–8 [CrossRef]
    [Google Scholar]
  20. Onishi H., Kamekura M.. 1972; Micrococcus halobius sp. nov. Int J Syst Bacteriol22:233–236 [CrossRef]
    [Google Scholar]
  21. Poli A., Esposito E., Orlando P., Lama L., Giordano A., de Appolonia F., Nicolaus B., Gambacorta A.. 2007; Halomonas alkaliantarctica sp. nov., isolated from saline lake Cape Russell in Antarctica, an alkalophilic moderately halophilic, exopolysaccharide-producing bacterium. Syst Appl Microbiol30:31–38 [CrossRef][PubMed]
    [Google Scholar]
  22. Poli A., Romano I., Cordella P., Orlando P., Nicolaus B., Ceschi Berrini C.. 2009; Anoxybacillus thermarum sp. nov., a novel thermophilic bacterium isolated from thermal mud in Euganean hot springs, Abano Terme, Italy. Extremophiles13:867–874 [CrossRef][PubMed]
    [Google Scholar]
  23. Romano I., Manca M. C., Lama L., Nicolaus B., Gambacorta A.. 1993; A method for antibiotic assay on Sulfolobales . Biotechnol Tech7:439–440 [CrossRef]
    [Google Scholar]
  24. Romano I., Finore I., Nicolaus G., Huertas F. J., Lama L., Nicolaus B., Poli A.. 2008; Halobacillus alkaliphilus sp. nov., a halophilic bacterium isolated from a salt lake in Fuente de Piedra, southern Spain. Int J Syst Evol Microbiol58:886–890 [CrossRef][PubMed]
    [Google Scholar]
  25. Romano I., Dipasquale L., Orlando P., Lama L., d'Ippolito G., Pascual J., Gambacorta A.. 2010; Thermoanaerobacterium thermostercus sp. nov., a new anaerobic thermophilic hydrogen-producing bacterium from buffalo-dung. Extremophiles14:233–240 [CrossRef][PubMed]
    [Google Scholar]
  26. Rustigian R., Stuart C. A.. 1941; Decomposition of urea by Proteus . Proc Soc Exp Biol Med47:108–112 [CrossRef]
    [Google Scholar]
  27. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  28. Stackebrandt E., Koch C., Gvozdiak O., Schumann P.. 1995; Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend. Int J Syst Bacteriol45:682–692 [CrossRef][PubMed]
    [Google Scholar]
  29. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  30. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  31. Wang H.-F., Zhang Y.-G., Chen J.-Y., Hozzein W. N., Li L., Wadaan M. A. M., Zhang Y.-M., Li W.-J.. 2014; Nesterenkonia rhizosphaerae sp. nov., an alkaliphilic actinobacterium isolated from rhizosphere soil in a saline-alkaline desert. Int J Syst Evol Microbiol64:4021–4026 [CrossRef][PubMed]
    [Google Scholar]
  32. Yoon J.-H., Jung S.-Y., Kim W., Nam S.-W., Oh T.-K.. 2006; Nesterenkonia jeotgali sp. nov., isolated from jeotgal, a traditional Korean fermented seafood. Int J Syst Evol Microbiol56:2587–2592 [CrossRef][PubMed]
    [Google Scholar]
  33. Zhang G., Zhang Y., Yin X., Wang S.. 2015; Nesterenkonia alkaliphila sp. nov., an alkaliphilic, halotolerant actinobacteria isolated from the western Pacific Ocean. Int J Syst Evol Microbiol65:516–521[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000917
Loading
/content/journal/ijsem/10.1099/ijsem.0.000917
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error