1887

Abstract

A polyphasic approach was used to characterize a novel nitrogen-fixing bacterial strain, designated CC-HIH038, isolated from cultivated soil in Taiwan. Cells of strain CC-HIH038 were Gram-stain-negative, facultatively aerobic and spiral-shaped, with motility provided by a single polar flagellum. The 16S rRNA gene sequence analysis of strain CC-HIH038 showed highest sequence similarity to (98.0 %), (97.5 %), (97.4 %) and (97.2 %) and lower sequence similarity ( < 97.0 %) to all other species of the genus . According to DNA–DNA association, the relatedness values of strain CC-HIH038 with , , and were 51.8 %, 41.2 %, 56.5 % and 37.5 %, respectively. Strain CC-HIH038 was able to grow at 20–37 °C and pH 7.0–8.0. Strain CC-HIH038 gave positive amplification for dinitrogen reductase ( gene); the activity was recorded as 8.4 nmol ethylene h. The predominant quinone system was ubiquinone Q-10 and the DNA G+C content was 68.8 mol%. The major fatty acids found in strain CC-HIH038 were C, iso-C, C 3-OH, C 3-OH/iso-C and Cω7/Cω6. Based on the distinct phylogenetic, phenotypic and chemotaxonomic traits together with results of comparative 16S rRNA gene sequence analysis, strain CC-HIH038 is considered to represent a novel species in the genus , for which the name sp. nov. is proposed. The type strain is CC-HIH038 ( = BCRC 80909 = JCM 30827).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000904
2016-03-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/3/1453.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000904&mimeType=html&fmt=ahah

References

  1. Beijerinck M. W.. ( 1925;). Über ein Spirillum, welches freien Stickstoff binden kann. Zentralbl Bakteriol Parasitenkd Infektionskr Abt 63: 353–359.
    [Google Scholar]
  2. Collins M. D.. ( 1985;). Isoprenoid quinone analysis in classification and identification. . In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by Goodfellow M., Minnikin D. E.. London: Academic Press;.
    [Google Scholar]
  3. Döbereiner J., Day J. M.. ( 1976;). Associative symbioses in tropical grasses: characterization of microorganisms and dinitrogen-fixing sites. . In Proceedings of the First International Symposium on N2 Fixation, pp. 518–538. Edited by Newton W. E., Nyman C. J.. Pullman: Washington State University Press;.
    [Google Scholar]
  4. Eckert B., Weber O. B., Kirchhof G., Halbritter A., Stoffels M., Hartmann A.. ( 2001;). Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. Int J Syst Evol Microbiol 51: 17–26 [CrossRef] [PubMed].
    [Google Scholar]
  5. Edwards U., Rogall T., Blöcker H., Emde M., Böttger E. C.. ( 1989;). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17: 7843–7853 [CrossRef] [PubMed].
    [Google Scholar]
  6. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  7. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  8. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  9. Hardy R. W. F., Burns R. C., Holsten R. D.. ( 1973;). Application of the acetylene-ethylene assay for measurement of nitrogen fixation. Soil Biol Biochem 5: 47–81 [CrossRef].
    [Google Scholar]
  10. Heiner C. R., Hunkapiller K. L., Chen S. M., Glass J. I., Chen E. Y.. ( 1998;). Sequencing multimegabase-template DNA with BigDye terminator chemistry. Genome Res 8: 557–561 [PubMed].
    [Google Scholar]
  11. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  12. Kirchhof G., Reis V. M., Baldani J. I., Eckert B., Döbereiner J., Hartmann A.. ( 1997;). Occurrence, physiological and molecular analysis of endophytic diazotrophic bacteria in gramineous energy plants. Plant Soil 194: 45–55 [CrossRef].
    [Google Scholar]
  13. Koch B., Evans H. J.. ( 1966;). Reduction of acetylene to ethylene by soybean root nodules. Plant Physiol 41: 1748–1750 [CrossRef] [PubMed].
    [Google Scholar]
  14. Ladha J. K., So R. B., Watanabe I.. ( 1987;). Composition of Azospirillum species associated with wetland rice plants grown in different soils. Plant Soil 102: 127–129 [CrossRef].
    [Google Scholar]
  15. Lavrinenko K., Chernousova E., Gridneva E., Dubinina G., Akimov V., Kuever J., Lysenko A., Grabovich M.. ( 2010;). Azospirillum thiophilum sp. nov., a diazotrophic bacterium isolated from a sulfide spring. Int J Syst Evol Microbiol 60: 2832–2837 [CrossRef] [PubMed].
    [Google Scholar]
  16. Lin S.-Y., Young C.-C., Hupfer H., Siering C., Arun A. B., Chen W.-M., Lai W.-A., Shen F.-T., Rekha P. D., Yassin A. F.. ( 2009;). Azospirillum picis sp. nov., isolated from discarded tar. Int J Syst Evol Microbiol 59: 761–765 [CrossRef] [PubMed].
    [Google Scholar]
  17. Lin S.-Y., Shen F.-T., Young C.-C.. ( 2011;). Rapid detection and identification of the free-living nitrogen fixing genus Azospirillum by 16S rRNA-gene-targeted genus-specific primers. Antonie van Leeuwenhoek 99: 837–844 [CrossRef] [PubMed].
    [Google Scholar]
  18. Lin S.-Y., Shen F.-T., Young L.-S., Zhu Z.-L., Chen W.-M., Young C.-C.. ( 2012;). Azospirillum formosense sp. nov., a diazotroph from agricultural soil. Int J Syst Evol Microbiol 62: 1185–1190 [CrossRef] [PubMed].
    [Google Scholar]
  19. Lin S.-Y., Liu Y.-C., Hameed A., Hsu Y.-H., Lai W.-A., Shen F.-T., Young C.-C.. ( 2013;). Azospirillum fermentarium sp. nov., a nitrogen-fixing species isolated from a fermenter. Int J Syst Evol Microbiol 63: 3762–3768 [CrossRef] [PubMed].
    [Google Scholar]
  20. Lin S.-Y., Hameed A., Shen F.-T., Liu Y.-C., Hsu Y.-H., Shahina M., Lai W.-A., Young C.-C.. ( 2014;). Description of Niveispirillum fermenti gen. nov., sp. nov., isolated from a fermentor in Taiwan, transfer of Azospirillum irakense (1989) as Niveispirillum irakense comb. nov., and reclassification of Azospirillum amazonense (1983) as Nitrospirillum amazonense gen. nov. Antonie van Leeuwenhoek 105: 1149–1162 [CrossRef] [PubMed].
    [Google Scholar]
  21. Lin S.-Y., Hameed A., Liu Y.-C., Hsu Y.-H., Lai W.-A., Shen F.-T., Young C.-C.. ( 2015;). Azospirillum soli sp. nov., a nitrogen-fixing species isolated from agriculture soil. Int J Syst Evol Microbiol 65: 4601–4607 [CrossRef] [PubMed].
    [Google Scholar]
  22. Mehnaz S., Weselowski B., Lazarovits G.. ( 2007a;). Azospirillum canadense sp. nov., a nitrogen-fixing bacterium isolated from corn rhizosphere. Int J Syst Evol Microbiol 57: 620–624 [CrossRef] [PubMed].
    [Google Scholar]
  23. Mehnaz S., Weselowski B., Lazarovits G.. ( 2007b;). Azospirillum zeae sp. nov., a diazotrophic bacterium isolated from rhizosphere soil of Zea mays. Int J Syst Evol Microbiol 57: 2805–2809 [CrossRef] [PubMed].
    [Google Scholar]
  24. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  25. Miller L. T.. ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16: 584–586 [PubMed].
    [Google Scholar]
  26. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal K., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  27. Murray R. G. E., Doetsch R. N., Robinow C. F.. ( 1994;). Determination and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  28. Paisley R.. ( 1996;). MIS Whole Cell Fatty Acid Analysis by Gas Chromatography Training Manual Newark, DE: MIDI;.
    [Google Scholar]
  29. Poly F., Monrozier L. J., Bally R.. ( 2001;). Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152: 95–103 [CrossRef] [PubMed].
    [Google Scholar]
  30. Reinhold B., Hurek T., Fendrik I., Pot B., Gillis M., Kersters K., Thielemans S., De Ley J.. ( 1987;). Azospirillum halopraeferens sp. nov., a nitrogen-fixing organism associated with roots of kallar grass (Leptochloa fusca (L.) Kunth). Int J Syst Bacteriol 37: 43–51 [CrossRef].
    [Google Scholar]
  31. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  32. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  33. Seldin L., Dubnau D.. ( 1985;). Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. Int Syst Bacteriol 35: 151–154 [CrossRef].
    [Google Scholar]
  34. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  35. Tarrand J. J., Krieg N. R., Döbereiner J.. ( 1978;). A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24: 967–980 [CrossRef] [PubMed].
    [Google Scholar]
  36. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  37. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  38. Young C.-C., Hupfer H., Siering C., Ho M.-J., Arun A. B., Lai W.-A., Rekha P. D., Shen F.-T., Hung M.-H., other authors. ( 2008;). Azospirillum rugosum sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 58: 959–963 [CrossRef] [PubMed].
    [Google Scholar]
  39. Young C.-C., Lin S.-Y., Shen F.-T., Lai W.-A.. ( 2015;). Molecular tools for identification and characterization of plant growth promoting rhizobacteria with emphasis in Azospirillum spp. . In Handbook for Azospirillum, pp. 27–44. Edited by Cassán F. D., Okon Y., Creus C. M.. New York: Springer; [CrossRef].
    [Google Scholar]
  40. Zhou S., Han L., Wang Y., Yang G., Zhuang L., Hu P.. ( 2013;). Azospirillum humicireducens sp. nov., a nitrogen-fixing bacterium isolated from a microbial fuel cell. Int J Syst Evol Microbiol 63: 2618–2624 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000904
Loading
/content/journal/ijsem/10.1099/ijsem.0.000904
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error