1887

Abstract

A Gram-negative, catalase-positive, mesophilic, obligately aerobic bacterium designated JRM2-1 was isolated from forest soil of Jirisan Mountain, Republic of Korea, and its taxonomic position was investigated based on a polyphasic taxonomic approach. Cells of strain JRM2-1 grew optimally at pH 5.0–7.0 and at 25 °C. Strain JRM2-1 was susceptible to chloramphenicol, gentamicin, kanamycin, nalidixic acid, rifampicin, streptomycin and tetracycline. On the basis of 16S rRNA gene sequence similarity, the closest neighbour of strain JRM2-1 was WR43 (98.1 %). On the basis of our phylogenetic analysis, strain JRM2-1 is clearly distinguished from related species of the genus and is clustered with plant-associated members of the genus. The major cellular fatty acids were C, C cyclo and C cyclo ω8. The polar lipid profile of strain JRM2-1 contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, several unidentified aminolipids and an unidentified aminophospholipid. The isoprenoid quinone of strain JRM2-1 was Q-8 and the DNA G+C content was 63.7 mol%. On the basis of our polyphasic taxonomic investigation, strain JRM2-1 is considered to represent a novel species in the genus , for which the name sp. nov. is proposed. The type strain is JRM2-1 ( = AIM 0373 = KCTC 42072 = JCM 19985).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000867
2016-03-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/3/1260.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000867&mimeType=html&fmt=ahah

References

  1. Aizawa T. , Ve N. B. , Vijarnsorn P. , Nakajima M. , Sunairi M. . ( 2010a;). Burkholderia acidipaludis sp. nov., aluminium-tolerant bacteria isolated from Chinese water chestnut (Eleocharis dulcis) growing in highly acidic swamps in South-East Asia. Int J Syst Evol Microbiol 60: 2036–2041 [CrossRef] [PubMed].
    [Google Scholar]
  2. Aizawa T. , Ve N. B. , Nakajima M. , Sunairi M. . ( 2010b;). Burkholderia heleia sp. nov., a nitrogen-fixing bacterium isolated from an aquatic plant, Eleocharis dulcis, that grows in highly acidic swamps in actual acid sulfate soil areas of Vietnam. Int J Syst Evol Microbiol 60: 1152–1157 [CrossRef] [PubMed].
    [Google Scholar]
  3. Aizawa T. , Vijarnsorn P. , Nakajima M. , Sunairi M. . ( 2011;). Burkholderia bannensis sp. nov., an acid-neutralizing bacterium isolated from torpedo grass (Panicum repens) growing in highly acidic swamps. Int J Syst Evol Microbiol 61: 1645–1650 [CrossRef] [PubMed].
    [Google Scholar]
  4. Baek I. , Seo B. , Lee I. , Lee K. , Park S. C. , Yi H. , Chun J. . ( 2015;). Burkholderia megalochromosomata sp. nov., isolated from grassland soil. Int J Syst Evol Microbiol 65: 959–964 [CrossRef] [PubMed].
    [Google Scholar]
  5. Chun J. , Lee J. H. , Jung Y. , Kim M. , Kim S. , Kim B. K. , Lim Y. W. . ( 2007;). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57: 2259–2261 [CrossRef] [PubMed].
    [Google Scholar]
  6. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12: 133–142 [CrossRef] [PubMed].
    [Google Scholar]
  7. DeLong E. F. . ( 1992;). Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89: 5685–5689 [CrossRef] [PubMed].
    [Google Scholar]
  8. Estrada-de los Santos P. , Vinuesa P. , Martínez-Aguilar L. , Hirsch A. M. , Caballero-Mellado J. . ( 2013;). Phylogenetic analysis of Burkholderia species by multilocus sequence analysis. Curr Microbiol 67: 51–60 [CrossRef] [PubMed].
    [Google Scholar]
  9. Farh M. A. , Kim Y. J. , Van An H. , Sukweenadhi J. , Singh P. , Huq M. A. , Yang D. C. . ( 2015;). Burkholderia ginsengiterrae sp. nov. and Burkholderia panaciterrae sp. nov., antagonistic bacteria against root rot pathogen Cylindrocarpon destructans, isolated from ginseng soil. Arch Microbiol 197: 439–447 [CrossRef] [PubMed].
    [Google Scholar]
  10. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  11. Fitch W. M. . ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  12. Gautam V. , Singhal L. , Ray P. . ( 2011;). Burkholderia cepacia complex: beyond Pseudomonas and Acinetobacter . Indian J Med Microbiol 29: 4–12 [CrossRef] [PubMed].
    [Google Scholar]
  13. Gyaneshwar P. , Hirsch A. M. , Moulin L. , Chen W. M. , Elliott G. N. , Bontemps C. , Estrada-de Los Santos P. , Gross E. , Dos Reis F.B., Jr. , other authors . ( 2011;). Legume-nodulating betaproteobacteria: diversity, host range, and future prospects. Mol Plant Microbe Interact 24: 1276–1288 [CrossRef] [PubMed].
    [Google Scholar]
  14. Ham J. H. , Melanson R. A. , Rush M. C. . ( 2011;). Burkholderia glumae: next major pathogen of rice?. Mol Plant Pathol 12: 329–339 [CrossRef] [PubMed].
    [Google Scholar]
  15. Huss V. A. , Festl H. , Schleifer K. H. . ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4: 184–192 [CrossRef] [PubMed].
    [Google Scholar]
  16. Johnson M. J. , Thatcher E. , Cox M. E. . ( 1995;). Techniques for controlling variability in gram staining of obligate anaerobes. J Clin Microbiol 33: 755–758 [PubMed].
    [Google Scholar]
  17. Jukes T. H. , Cantor C. R. . ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism vol. 3, pp. 21–132. Edited by Munro H. N. . New York: Academic Press; [CrossRef].
    [Google Scholar]
  18. Keswani J. , Whitman W. B. . ( 2001;). Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes. Int J Syst Evol Microbiol 51: 667–678 [CrossRef] [PubMed].
    [Google Scholar]
  19. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. , other authors . ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  20. Kim S. , Gong G. , Park T. H. , Um Y. . ( 2013;). Asticcacaulis solisilvae sp. nov., isolated from forest soil. Int J Syst Evol Microbiol 63: 3829–3834 [CrossRef] [PubMed].
    [Google Scholar]
  21. Komagata K. , Suzuki K. . ( 1987;). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19: 161–207 [CrossRef].
    [Google Scholar]
  22. Lee J. C. , Whang K. S. . ( 2015;). Burkholderia humisilvae sp. nov., Burkholderia solisilvae sp. nov. and Burkholderia rhizosphaerae sp. nov., isolated from forest soil and rhizosphere soil. Int J Syst Evol Microbiol 65: 2986–2992 [CrossRef] [PubMed].
    [Google Scholar]
  23. Lee C. M. , Weon H. Y. , Yoon S. H. , Kim S. J. , Koo B. S. , Kwon S. W. . ( 2012;). Burkholderia denitrificans sp. nov., isolated from the soil of Dokdo Island, Korea. J Microbiol 50: 855–859 [CrossRef] [PubMed].
    [Google Scholar]
  24. Lim Y. W. , Baik K. S. , Han S. K. , Kim S. B. , Bae K. S. . ( 2003;). Burkholderia sordidicola sp. nov., isolated from the white-rot fungus Phanerochaete sordida . Int J Syst Evol Microbiol 53: 1631–1636 [CrossRef] [PubMed].
    [Google Scholar]
  25. Lim J. H. , Baek S. H. , Lee S. T. . ( 2008;). Burkholderia sediminicola sp. nov., isolated from freshwater sediment. Int J Syst Evol Microbiol 58: 565–569 [CrossRef] [PubMed].
    [Google Scholar]
  26. Liu X. Y. , Li C. X. , Luo X. J. , Lai Q. L. , Xu J. H. . ( 2014;). Burkholderia jiangsuensis sp. nov., a methyl parathion degrading bacterium, isolated from methyl parathion contaminated soil. Int J Syst Evol Microbiol 64: 3247–3253 [CrossRef] [PubMed].
    [Google Scholar]
  27. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  28. Minnikin D. E. , O'Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J. H. . ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  29. Payne G. W. , Vandamme P. , Morgan S. H. , Lipuma J. J. , Coenye T. , Weightman A. J. , Jones T. H. , Mahenthiralingam E. . ( 2005;). Development of a recA gene-based identification approach for the entire Burkholderia genus. Appl Environ Microbiol 71: 3917–3927 [CrossRef] [PubMed].
    [Google Scholar]
  30. Powers E. M. . ( 1995;). Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61: 3756–3758 [PubMed].
    [Google Scholar]
  31. Rusch A. , Islam S. , Savalia P. , Amend J. P. . ( 2015;). Burkholderia insulsa sp. nov., a facultatively chemolithotrophic bacterium isolated from an arsenic-rich shallow marine hydrothermal system. Int J Syst Evol Microbiol 65: 189–194 [CrossRef] [PubMed].
    [Google Scholar]
  32. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  33. Sawana A. , Adeolu M. , Gupta R. S. . ( 2014;). Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 5: 429 [CrossRef] [PubMed].
    [Google Scholar]
  34. Schwyn B. , Neilands J. B. . ( 1987;). Universal chemical assay for the detection and determination of siderophores. Anal Biochem 160: 47–56 [CrossRef] [PubMed].
    [Google Scholar]
  35. Sheu S. Y. , Chou J. H. , Bontemps C. , Elliott G. N. , Gross E. , James E. K. , Sprent J. I. , Young J. P. , Chen W. M. . ( 2012;). Burkholderia symbiotica sp. nov., isolated from root nodules of Mimosa spp. native to north-east Brazil. Int J Syst Evol Microbiol 62: 2272–2278 [CrossRef] [PubMed].
    [Google Scholar]
  36. Sheu S. Y. , Chou J. H. , Bontemps C. , Elliott G. N. , Gross E. , dos Reis Junior F. B. , Melkonian R. , Moulin L. , James E. K. , other authors . ( 2013;). Burkholderia diazotrophica sp. nov., isolated from root nodules of Mimosa spp. Int J Syst Evol Microbiol 63: 435–441 [CrossRef] [PubMed].
    [Google Scholar]
  37. Silva E. B. , Dow S. W. . ( 2013;). Development of Burkholderia mallei and pseudomalleivaccines. Front Cell Infect Microbiol 3: 10 [PubMed].[CrossRef]
    [Google Scholar]
  38. Spilker T. , Baldwin A. , Bumford A. , Dowson C. G. , Mahenthiralingam E. , LiPuma J. J. . ( 2009;). Expanded multilocus sequence typing for Burkholderia species. J Clin Microbiol 47: 2607–2610 [CrossRef] [PubMed].
    [Google Scholar]
  39. Stackebrandt E. , Ebers J. . ( 2006;). Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33: 152–155.
    [Google Scholar]
  40. Tamura K. , Stecher G. , Peterson D. , Filipski A. , Kumar S. . ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  41. Tayeb L. A. , Lefevre M. , Passet V. , Diancourt L. , Brisse S. , Grimont P. A. D. . ( 2008;). Comparative phylogenies of Burkholderia, Ralstonia, Comamonas, Brevundimonas and related organisms derived from rpoB, gyrB and rrs gene sequences. Res Microbiol 159: 169–177 [CrossRef] [PubMed].
    [Google Scholar]
  42. Tian Y. , Kong B. H. , Liu S. L. , Li C. L. , Yu R. , Liu L. , Li Y. H. . ( 2013;). Burkholderia grimmiae sp. nov., isolated from a xerophilous moss (Grimmia montana). Int J Syst Evol Microbiol 63: 2108–2113 [CrossRef] [PubMed].
    [Google Scholar]
  43. Yabuuchi E. , Kosako Y. , Oyaizu H. , Yano I. , Hotta H. , Hashimoto Y. , Ezaki T. , Arakawa M. . ( 1992;). Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol Immunol 36: 1251–1275 [CrossRef] [PubMed].
    [Google Scholar]
  44. Yang H. C. , Im W. T. , Kim K. K. , An D. S. , Lee S. T. . ( 2006;). Burkholderia terrae sp. nov., isolated from a forest soil. Int J Syst Evol Microbiol 56: 453–457 [CrossRef] [PubMed].
    [Google Scholar]
  45. Zhu H. , Guo J. , Chen M. , Feng G. , Yao Q. . ( 2012;). Burkholderia dabaoshanensis sp. nov., a heavy-metal-tolerant bacteria isolated from Dabaoshan mining area soil in China. PLoS One 7: e50225 [CrossRef] [PubMed].
    [Google Scholar]
  46. Zuleta L. F. , Cunha C. O. , de Carvalho F. M. , Ciapina L. P. , Souza R. C. , Mercante F. M. , de Faria S. M. , Baldani J. I. , Straliotto R. , other authors . ( 2014;). The complete genome of Burkholderia phenoliruptrix strain BR3459a, a symbiont of Mimosa flocculosa: highlighting the coexistence of symbiotic and pathogenic genes. BMC Genomics 15: 535 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000867
Loading
/content/journal/ijsem/10.1099/ijsem.0.000867
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error