1887

Abstract

A Gram-stain-negative, rod-shaped, motile bacterium, PC004, was isolated from root nodules of the Thai medicinal plant var. . 16S rRNA gene sequence analysis indicated that the strain is phylogenetically related to species in the genus showing highest similarity (96.6 %) with HAMBI 3194. The phylogenetic tree reconstructed based on 16S rRNA gene sequences showed that strain PC004 forms a cluster with KCTC 23288. Based on , and gene sequences, strain PC004 also showed low similarity ( < 90 %) to reference strains. These phylogenetic data indicate that PC004 may represent a novel species. Strain PC004 also exhibited low DNA–DNA relatedness with HAMBI 3194 (8.2 %) and KCTC 23288 (26.3 %). The DNA G+C content of strain PC004 was 64 mol%, which is within the range reported for the genus . The major fatty acid of PC004 was Cω7 with minor amounts of C, C 3-OH, C 3-OH, C 2-OH, C cyclo ω8 and summed feature 2. The strain was able to grow at pH 12 and with up to 2 % (w/v) NaCl. Strain PC004 did not nodulate five tested legumes and the and genes were not detected by PCR. Based on the physiological, chemotaxonomic and phenotypic data from this study, strain PC004 represents a novel species of the genus , for which the name sp. nov. is proposed; the type strain is PC004 ( = BCC 73740 = NBRC 110722).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000863
2016-03-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/3/1236.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000863&mimeType=html&fmt=ahah

References

  1. Bautista V. V., Monsalud R. G., Yokota A.. ( 2010;). Devosia yakushimensis sp. nov., isolated from root nodules of Pueraria lobata (Willd.) Ohwi. Int J Syst Evol Microbiol 60: 627–632 [CrossRef] [PubMed].
    [Google Scholar]
  2. Berge O., Lodhi A., Brandelet G., Santaella C., Roncato M. A., Christen R., Heulin T., Achouak W.. ( 2009;). Rhizobium alamii sp. nov., an exopolysaccharide-producing species isolated from legume and non-legume rhizospheres. Int J Syst Evol Microbiol 59: 367–372 [CrossRef] [PubMed].
    [Google Scholar]
  3. Chansakaow S., Ishikawa T., Sekine K., Okada M., Higuchi Y., Kudo M., Chaichantipyuth C.. ( 2000;). Isoflavonoids from Pueraria mirifica and their estrogenic activity. Planta Med 66: 572–575 [CrossRef] [PubMed].
    [Google Scholar]
  4. Cherdshewasart W., Cheewasopit W., Picha P.. ( 2004;). The differential anti-proliferation effect of white (Pueraria mirifica), red (Butea superba), and black (Mucuna collettii) Kwao Krua plants on the growth of MCF-7 cells. J Ethnopharmacol 93: 255–260 [CrossRef] [PubMed].
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224–229 [CrossRef].
    [Google Scholar]
  6. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  7. Gaunt M. W., Turner S. L., Rigottier-Gois L., Lloyd-Macgilp S. A., Young J. P.. ( 2001;). Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 51: 2037–2048 [CrossRef] [PubMed].
    [Google Scholar]
  8. Hall T. A.. ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95–98.
    [Google Scholar]
  9. Inahashi Y., Matsumoto A., Danbara H., O¯mura S., Takahashi Y.. ( 2010;). Phytohabitans suffuscus gen. nov., sp. nov., an actinomycete of the family Micromonosporaceae isolated from plant roots. Int J Syst Evol Microbiol 60: 2652–2658 [CrossRef] [PubMed].
    [Google Scholar]
  10. Keung W. M.. ( 2002;). Pueraria: the genus Pueraria., New York: Taylor Francis;.
    [Google Scholar]
  11. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  12. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120 [CrossRef] [PubMed].
    [Google Scholar]
  13. Kittiwongwattana C., Thawai C.. ( 2013;). Rhizobium paknamense sp. nov., isolated from lesser duckweeds (Lemna aequinoctialis). Int J Syst Evol Microbiol 63: 3823–3828 [CrossRef] [PubMed].
    [Google Scholar]
  14. Kittiwongwattana C., Thawai C.. ( 2014;). Rhizobium lemnae sp. nov., a bacterial endophyte of Lemna aequinoctialis. Int J Syst Evol Microbiol 64: 2455–2460 [CrossRef] [PubMed].
    [Google Scholar]
  15. Kuykendall L. D., Young J. M., Martínez-Romero E., Kerr A., Sawada H.. ( 2005;). Genus I. Rhizobium Frank 1889, 338AL. . In Bergey's Manual of Systematic Bacteriology, pp. 325–340. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M.. New York:: Springer; [CrossRef].
    [Google Scholar]
  16. Laguerre G., Nour S. M., Macheret V., Sanjuan J., Drouin P., Amarger N.. ( 2001;). Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147: 981–993 [CrossRef] [PubMed].
    [Google Scholar]
  17. Lin D. X., Chen W. F., Wang F. Q., Hu D., Wang E. T., Sui X. H., Chen W. X.. ( 2009;). Rhizobium mesosinicum sp. nov., isolated from root nodules of three different legumes. Int J Syst Evol Microbiol 59: 1919–1923 [CrossRef] [PubMed].
    [Google Scholar]
  18. López-López A., Rogel-Hernández M. A., Barois I., Ortiz Ceballos A. I., Martínez J., Ormeño-Orrillo E., Martínez-Romero E.. ( 2012;). Rhizobium grahamii sp. nov., from nodules of Dalea leporina, Leucaena leucocephala, Clitoria ternatea, and Rhizobium mesoamericanum sp. nov., from nodules of Phaseolus vulgaris, siratro, cowpea and Mimosa pudica. Int J Syst Evol Microbiol 62: 2264–2271 [CrossRef] [PubMed].
    [Google Scholar]
  19. Martens M., Dawyndt P., Coopman R., Gillis M., De Vos P., Willems A.. ( 2008;). Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). Int J Syst Evol Microbiol 58: 200–214 [CrossRef] [PubMed].
    [Google Scholar]
  20. Mnasri B., Liu T. Y., Saidi S., Chen W. F., Chen W. X., Zhang X. X., Mhamdi R.. ( 2014;). Rhizobium azibense sp. nov., a nitrogen fixing bacterium isolated from root-nodules of Phaseolus vulgaris. Int J Syst Evol Microbiol 64: 1501–1506 [CrossRef] [PubMed].
    [Google Scholar]
  21. Mousavi S. A., Österman J., Wahlberg N., Nesme X., Lavire C., Vial L., Paulin L., de Lajudie P., Lindström K.. ( 2014;). Phylogeny of the Rhizobium-Allorhizobium-Agrobacterium clade supports the delineation of Neorhizobium gen. nov. Syst Appl Microbiol 37: 208–215 [CrossRef] [PubMed].
    [Google Scholar]
  22. Parag B., Sasikala Ch., Ramana Ch. V.. ( 2013;). Molecular and culture dependent characterization of endolithic bacteria in two beach sand samples and description of Rhizobium endolithicum sp. nov. Antonie van Leeuwenhoek 104: 1235–1244 [CrossRef] [PubMed].
    [Google Scholar]
  23. Peng G., Yuan Q., Li H., Zhang W., Tan Z.. ( 2008;). Rhizobium oryzae sp. nov., isolated from the wild rice Oryza alta. Int J Syst Evol Microbiol 58: 2158–2163 [CrossRef] [PubMed].
    [Google Scholar]
  24. Pongsilp N., Leelahawonge C., Nuntagij A., Teaumroong N., Boonkerd N.. ( 2010;). Characterization of Pueraria mirifica-nodulating rhizobia present in Thai soil. Afr J Microbiol Res 4: 1307–1313.
    [Google Scholar]
  25. Puławska J., Willems A., Sobiczewski P.. ( 2012;). Rhizobium skierniewicense sp. nov., isolated from tumours on chrysanthemum and cherry plum. Int J Syst Evol Microbiol 62: 895–899 [CrossRef] [PubMed].
    [Google Scholar]
  26. Quan Z. X., Bae H. S., Baek J. H., Chen W. F., Im W. T., Lee S. T.. ( 2005;). Rhizobium daejeonense sp. nov. isolated from a cyanide treatment bioreactor. Int J Syst Evol Microbiol 55: 2543–2549 [CrossRef] [PubMed].
    [Google Scholar]
  27. Ren W., Chen W. F., Sui X. H., Wang E. T., Chen W. X.. ( 2011a;). Rhizobium vignae sp. nov., a symbiotic bacterium isolated from multiple legume species. Int J Syst Evol Microbiol 61: 580–586 [CrossRef] [PubMed].
    [Google Scholar]
  28. Ren W., Wang E. T., Chen W. F., Sui X. H., Zhang X. X., Liu H. C., Chen W. X.. ( 2011b;). Rhizobium herbae sp. nov. and Rhizobium giardinii-related bacteria, minor microsymbionts of various wild legumes in China. Int J Syst Evol Microbiol 61: 1912–1920 [CrossRef] [PubMed].
    [Google Scholar]
  29. Rincón-Rosales R., Villalobos-Escobedo J. M., Rogel M. A., Martinez J., Ormeño-Orrillo E., Martínez-Romero E.. ( 2013;). Rhizobium calliandrae sp. nov., Rhizobium mayense sp. nov. and Rhizobium jaguaris sp. nov., rhizobial species nodulating the medicinal legume Calliandra grandiflora. Int J Syst Evol Microbiol 63: 3423–3429 [CrossRef] [PubMed].
    [Google Scholar]
  30. Saito H., Miura K. I.. ( 1963;). Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72: 619–629 [CrossRef] [PubMed].
    [Google Scholar]
  31. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  32. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. Newark, DE: MIDI Inc..
  33. Tajima K., Takahashi Y., Seino A., Iwai Y., Omura S.. ( 2001;). Description of two novel species of the genus Kitasatospora Omura et al. 1982, Kitasatospora cineracea sp. nov. and Kitasatospora niigatensis sp. nov. Int J Syst Evol Microbiol 51: 1765–1771 [CrossRef] [PubMed].
    [Google Scholar]
  34. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25: 125–128 [CrossRef].
    [Google Scholar]
  35. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  36. Tighe S. W., de Lajudie P., Dipietro K., Lindström K., Nick G., Jarvis B. D.. ( 2000;). Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50: 787–801 [CrossRef] [PubMed].
    [Google Scholar]
  37. Trisomboon H., Malaivijitnond S., Watanabe G., Taya K.. ( 2004;). Estrogenic effects of Pueraria mirifica on the menstrual cycle and hormone-related ovarian functions in cyclic female cynomolgus monkeys. J Pharmacol Sci 94: 51–59 [CrossRef] [PubMed].
    [Google Scholar]
  38. Urasopon N., Hamada Y., Asaoka K., Cherdshewasart W., Malaivijitnond S.. ( 2007;). Pueraria mirifica, a phytoestrogen-rich herb, prevents bone loss in orchidectomized rats. Maturitas 56: 322–331 [CrossRef] [PubMed].
    [Google Scholar]
  39. Vincent J. M.. ( 1970;). The cultivation, isolation and maintenance of rhizobia. . In A Manual for the Practical Study of the Root-Nodule Bacteria, pp. 1–13. Edited by Vincent J. M.. Oxford: Blackwell Scientific;.
    [Google Scholar]
  40. Vinuesa P., Silva C., Lorite M. J., Izaguirre-Mayoral M. L., Bedmar E. J., Martínez-Romero E.. ( 2005;). Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. Syst Appl Microbiol 28: 702–716 [CrossRef] [PubMed].
    [Google Scholar]
  41. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., other authors. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  42. Yao L. J., Shen Y. Y., Zhan J. P., Xu W., Cui G. L., Wei G. H.. ( 2012;). Rhizobium taibaishanense sp. nov., isolated from a root nodule of Kummerowia striata. Int J Syst Evol Microbiol 62: 335–341 [CrossRef] [PubMed].
    [Google Scholar]
  43. Zhang G. X., Ren S. Z., Xu M. Y., Zeng G. Q., Luo H. D., Chen J. L., Tan Z. Y., Sun G. P.. ( 2011a;). Rhizobium borbori sp. nov., aniline-degrading bacteria isolated from activated sludge. Int J Syst Evol Microbiol 61: 816–822 [CrossRef] [PubMed].
    [Google Scholar]
  44. Zhang R. J., Hou B. C., Wang E. T., Li Y., Jr, Zhang X. X., Chen W. X.. ( 2011b;). Rhizobium tubonense sp. nov., isolated from root nodules of Oxytropis glabra. Int J Syst Evol Microbiol 61: 512–517 [CrossRef] [PubMed].
    [Google Scholar]
  45. Zhang X., Li B., Wang H., Sui X., Ma X., Hong Q., Jiang R.. ( 2012;). Rhizobium petrolearium sp. nov., isolated from oil-contaminated soil. Int J Syst Evol Microbiol 62: 1871–1876 [CrossRef] [PubMed].
    [Google Scholar]
  46. Zhang X. X., Tang X., Sheirdil R. A., Sun L., Ma X. T.. ( 2014;). Rhizobium rhizoryzae sp. nov., isolated from rice roots. Int J Syst Evol Microbiol 64: 1373–1377 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000863
Loading
/content/journal/ijsem/10.1099/ijsem.0.000863
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error