1887

Abstract

Strain NHI-13, a Gram-stain-negative, aerobic and short rod-shaped bacterium, was isolated from forest soil at Kyonggi University in Suwon, South Korea. It grew optimally in R2A medium, at 20–30 °C, in the presence of 0–4 % NaCl. Colonies resulting from incubation of the strain on agar plates for 2 days were circular, raised, translucent, viscous and whitish-yellow, with entire margins. This strain exhibited high catalase activity but was negative for oxidase. 16S rRNA gene sequence analysis showed that strain NHI-13 formed a coherent cluster with members of the genus . Its similarities were 98.0 % with DSM 4731, 97.9 % with LMG 2350, 97.6 % with ATCC 15262, 97.5 % with GTC 1043, 97.1 % with ‘’ MJ15, 97.1 % with V4.BO.10 and 97.0 % with FWC40. The major cellular fatty acids were summed feature 8 (Cω7/Cω6), C and 11-methyl Cω7. The DNA G+C content was 63 mol%. The predominant quinone was ubiquinone Q-10. The polar lipid profile contained 1,2-di--acyl-3--α--glycopyranuronosyl glycerol, 1,2-di--acyl-3--α--glycopyranosyl glycerol, 1,2-di--acyl-3--[-glycopyranosyl (1 → 4)-α--glucopyranuronosyl] glycerols, phosphatidylglycerol, 1,2-diacyl-3- O-(6′-phosphatidyl-α--glucopyranosyl) glycerol and other unknown lipids. The DNA relatedness of strain NHI-13 with its reference strains was in the range of 43–56 %. On the basis of its phenotypic, genotypic, chemotaxonomic and phylogenetic distinctiveness, strain NHI-13 is suggested to be a representative of a novel species, belonging to the genus . Therefore, the name sp. nov. is proposed, with the type strain being NHI-13 ( = KEME 9005-016 = KACC 18249 = JCM 30385).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000848
2016-03-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/3/1144.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000848&mimeType=html&fmt=ahah

References

  1. Abraham W. R. , Strömpl C. , Meyer H. , Lindholst S. , Moore E. R. , Christ R. , Vancanneyt M. , Tindall B. J. , Bennasar A. , other authors . ( 1999;). Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter . Int J Syst Bacteriol 49: 1053–1073 [CrossRef] [PubMed].
    [Google Scholar]
  2. Abraham W. R. , Macedo A. J. , Lünsdorf H. , Fischer R. , Pawelczyk S. , Smit J. , Vancanneyt M. . ( 2008;). Phylogeny by a polyphasic approach of the order Caulobacterales, proposal of Caulobacter mirabilis sp. nov., Phenylobacterium haematophilum sp. nov. and Phenylobacterium conjunctum sp. nov., and emendation of the genus Phenylobacterium . Int J Syst Evol Microbiol 58: 1939–1949 [CrossRef] [PubMed].
    [Google Scholar]
  3. Anast N. , Smit J. . ( 1988;). Isolation and characterization of marine caulobacters and assessment of their potential for genetic experimentation. Appl Environ Microbiol 54: 809–817 [PubMed].
    [Google Scholar]
  4. Breznak J. A. , Costilow R. N. . ( 1994;). Physicochemical factors in growth. . In Methods for General and Molecular Bacteriology, pp. 137–154. Edited by Gerhardt P. , Murray R. , Wood W. A. , Krieg N. R. . Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  5. Büsing K. H. , Doll W. , Freytag K. . ( 1953;). Die Bakterienflora der medizinischen Blutegel. Arch Mikrobiol 19: 52–86 [CrossRef] [PubMed].
    [Google Scholar]
  6. Dartnell L. R. , Hunter S. J. , Lovell K. V. , Coates A. J. , Ward J. M. . ( 2010;). Low-temperature ionizing radiation resistance of Deinococcus radiodurans and Antarctic Dry Valley bacteria. Astrobiology 10: 717–732 [CrossRef] [PubMed].
    [Google Scholar]
  7. Doetsch R. N. . ( 1981;). Determinative methods of light microscopy. . In Manual of Methods for General Bacteriology, pp. 21–33. Edited by Gerhardt P. , Costilow R. N. , Nester E. W. , Wood W. A. , Krieg N. R. , Phillips G. B. . Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  8. Estrela A. B. , Abraham W. R. . ( 2010;). Brevundimonas vancanneytii sp. nov., isolated from blood of a patient with endocarditis. Int J Syst Evol Microbiol 60: 2129–2134 [CrossRef] [PubMed].
    [Google Scholar]
  9. Felsenstein J. . ( 1985;). Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  10. Frank J. A. , Reich C. I. , Sharma S. , Weisbaum J. S. , Wilson B. A. , Olsen G. J. . ( 2008;). Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl Environ Microbiol 74: 2461–2470 [CrossRef] [PubMed].
    [Google Scholar]
  11. Hiraishi A. , Ueda Y. , Ishihara J. , Mori T. . ( 1996;). Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42: 457–469 [CrossRef].
    [Google Scholar]
  12. Jeong S. J. , Jeong J. , Kim J. . ( 2015;). Simple surface foam application enhances bioremediation of oil-contaminated soil in cold conditions. J Hazard Mat 286: 164–170.[CrossRef]
    [Google Scholar]
  13. Kempf M. J. , Chen F. , Kern R. , Venkateswaran K. . ( 2005;). Recurrent isolation of hydrogen peroxide-resistant spores of Bacillus pumilus from a spacecraft assembly facility. Astrobiology 5: 391–405 [CrossRef] [PubMed].
    [Google Scholar]
  14. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. , other authors . ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  15. Komagata K. , Suzuki K. . ( 1987;). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19: 161–207 [CrossRef].
    [Google Scholar]
  16. Leifson E. , Hugh R. . ( 1954;). A new type of polar monotrichous flagellation. J Gen Microbiol 10: 68–70 [CrossRef] [PubMed].
    [Google Scholar]
  17. MacRae J. D. , Smit J. . ( 1991;). Characterization of caulobacters isolated from wastewater treatment systems. Appl Environ Microbiol 57: 751–758 [PubMed].
    [Google Scholar]
  18. Madigan M. T. , Martinko J. M. , Stahl D. A. , Clark D. P. . ( 2010;). Brock Biology of Microorganisms , 13th edn. San Francisco: Benjamin Cummings;.
    [Google Scholar]
  19. Mehlen A. , Goeldner M. , Ried S. , Stindl S. , Ludwig W. , Schleifer K. H. . ( 2004;). Development of a fast DNA-DNA hybridization method based on melting profiles in microplates. Syst Appl Microbiol 27: 689–695 [CrossRef] [PubMed].
    [Google Scholar]
  20. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  21. Minnikin D. E. , O'Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J. H. . ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  22. Nei M. , Kumar S. . ( 2000;). Molecular Evolution and Phylogenetics New York: Oxford University Press;.
    [Google Scholar]
  23. Nokhal T. H. , Schlegel H. G. . ( 1983;). Taxonomic study of Paracoccus denitrijicans . Int J Syst Bacteriol 33: 26–37 [CrossRef].
    [Google Scholar]
  24. Parte A. C. . ( 2014;). LPSN—list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 42: (D1), D613–D616 [CrossRef] [PubMed].
    [Google Scholar]
  25. Poindexter J. S. . ( 1981;). The caulobacters: ubiquitous unusual bacteria. Microbiol Rev 45: 123–179 [PubMed].
    [Google Scholar]
  26. Poindexter J. S. . ( 1999;). Dimorphic prosthecate bacteria: the genera Caulobacter, Asticcacaulis, Hyphomicrobium, Pedomicrobium, Hyphomonas, and Thiodendron . . In The Prokaryotes , 3rd edn., pp. 2176–2196. Edited by Dworkin M. , Falkow S. , Rosenberg E. , Schleifer K. H. , Stackebrandt E. . New York: Springer;.
    [Google Scholar]
  27. Rautela G. S. , Cowling E. B. . ( 1966;). Simple cultural test for relative cellulolytic activity of fungi. Appl Microbiol 14: 892–898 [PubMed].
    [Google Scholar]
  28. Sasser M. . ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  29. Segers P. , Vancanneyt M. , Pot B. , Torck U. , Hoste B. , Dewettinck D. , Falsen E. , Kersters K. , De Vos P. . ( 1994;). Classification of Pseudomonas diminuta Leifson and Hugh 1954 and Pseudomonas vesicularis Büsing, Döll, and Freytag 1953 in Brevundimonas gen. nov. as Brevundimonas diminuta comb. nov. and Brevundimonas vesicularis comb. nov., respectively. Int J Syst Bacteriol 44: 499–510 [CrossRef] [PubMed].
    [Google Scholar]
  30. Smibert R. M. , Krieg N. R. . ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  31. Staley J. T. , Konopka A. E. , Dalmasso J. P. . ( 1987;). Spatial and temporal distribution of Caulobacter spp. in two mesotrophic lakes. FEMS Microbiol Ecol 45: 1–6 [CrossRef].
    [Google Scholar]
  32. Swan A. . ( 1954;). The use of a bile-aesculin medium and of Maxted's technique of Lancefield grouping in the identification of enterococci (group D streptococci). J Clin Pathol 7: 160–163 [CrossRef] [PubMed].
    [Google Scholar]
  33. Tamura K. , Stecher G. , Peterson D. , Filipski A. , Kumar S. . ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  34. Tsubouchi T. , Shimane Y. , Usui K. , Shimamura S. , Mori K. , Hiraki T. , Tame A. , Uematsu K. , Maruyama T. , Hatada Y. . ( 2013;). Brevundimonas abyssalis sp. nov., a dimorphic prosthecate bacterium isolated from deep-subsea floor sediment. Int J Syst Evol Microbiol 63: 1987–1994 [CrossRef] [PubMed].
    [Google Scholar]
  35. Tsubouchi T. , Koyama S. , Mori K. , Shimane Y. , Usui K. , Tokuda M. , Tame A. , Uematsu K. , Maruyama T. , Hatada Y. . ( 2014;). Brevundimonas denitrificans sp. nov., a denitrifying bacterium isolated from deep subseafloor sediment. Int J Syst Evol Microbiol 64: 3709–3716 [CrossRef] [PubMed].
    [Google Scholar]
  36. Van Pham H. T. , Kim J. . ( 2014;). Bacillus thaonhiensis sp. nov., a new species, was isolated from the forest soil of Kyonggi University by using a modified culture method. Curr Microbiol 68: 88–95 [CrossRef] [PubMed].
    [Google Scholar]
  37. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D. , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C. , Murray R. G. E. , other authors . ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  38. Wilson K. . ( 1987;). Preparation of genomic DNA from bacteria. . In Current Protocols in Molecular Biology, pp. 2.4.1–2.4.5. Edited by Ausubel F. M. , Brent R. , Kingston R. E. , Moore D. D. , Seidman J. G. , Smith J. A. , Struhl K. . New York: Wiley;.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000848
Loading
/content/journal/ijsem/10.1099/ijsem.0.000848
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error