1887

Abstract

A bacterial strain, designated TTM-1, was isolated from a water sample taken from the Caohu River in Taiwan and characterized in a taxonomic study using a polyphasic approach. Cells of strain TTM-1 were Gram-stain-negative, aerobic, non-motile, rod-shaped and covered by large capsules, and formed pink-coloured colonies. Growth occurred at 10–37 °C (optimum 30–37 °C), at pH 6–8 (optimum pH 6–7) and with 0–2 % NaCl (optimum 0.5 %). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain TTM-1 belonged to the genus and was most closely related to A5 with a 16S rRNA gene sequence similarity of 97.3 %. The predominant fatty acids of strain TTM-1 were summed feature 3 (Cω7 and/or Cω6; 37.1 %) and iso-C (30.7 %). The polar lipid profile consisted of phosphatidylethanolamine and several uncharacterized aminophospholipids and phospholipids. The major isoprenoid quinone was MK-7. The DNA G+C content of the genomic DNA was 45.1 mol%. The DNA–DNA relatedness of strain TTM-1 with respect to recognized species of the genus was less than 70 %. On the basis of the phylogenetic inference and phenotypic data, strain TTM-1 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is TTM-1 ( = LMG 28454 = KCTC 42273).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000838
2016-03-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/3/1112.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000838&mimeType=html&fmt=ahah

References

  1. Anzai Y., Kudo Y., Oyaizu H.. 1997; The phylogeny of the genera Chryseomonas, Flavimonas, and Pseudomonas supports synonymy of these three genera. Int J Syst Bacteriol47:249–251 [CrossRef][PubMed]
    [Google Scholar]
  2. Baik K. S., Park S. C., Kim E. M., Lim C. H., Seong C. N.. 2010; Mucilaginibacter rigui sp. nov., isolated from wetland freshwater, and emended description of the genus Mucilaginibacter . Int J Syst Evol Microbiol60:134–139 [CrossRef][PubMed]
    [Google Scholar]
  3. Bernardet J.-F., Nakagawa Y., Holmes B.. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol52:1049–1070[PubMed]
    [Google Scholar]
  4. Bowman J. P.. 2000; Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol50:1861–1868 [CrossRef][PubMed]
    [Google Scholar]
  5. Breznak J. A., Costilow R. N.. 2007; Physicochemical factors in growth. In Methods for General and Molecular Bacteriology, 3rd edn. pp309–329Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.. Washington, D.C: American Society for Microbiology;
    [Google Scholar]
  6. Chen W. M., Laevens S., Lee T. M., Coenye T., De Vos P., Mergeay M., Vandamme P.. 2001; Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol51:1729–1735 [CrossRef][PubMed]
    [Google Scholar]
  7. Chen X. Y., Zhao R., Tian Y., Kong B. H., Li X. D., Chen Z. L., Li Y. H.. 2014; Mucilaginibacter polytrichastri sp. nov., isolated from a moss (Polytrichastrum formosum), and emended description of the genus Mucilaginibacter . Int J Syst Evol Microbiol64:1395–1400 [CrossRef][PubMed]
    [Google Scholar]
  8. Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., Kulam-Syed-Mohideen A. S., McGarrell D. M., Marsh T., other authors. 2009; The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res37: (Database)D141–D145 [CrossRef][PubMed]
    [Google Scholar]
  9. Collins M. D.. 1994; Isoprenoid quinones. In Chemical Methods in Prokaryotic Systematics pp265–309Edited by Goodfellow M., O'Donnell A. G.. Chichester: Wiley;
    [Google Scholar]
  10. Embley T. M., Wait R.. 1994; Structural lipids of eubacteria. In Chemical Methods in Prokaryotic Systematics pp121–161Edited by Goodfellow M., O'Donnell A. G.. Chichester: Wiley;
    [Google Scholar]
  11. Ezaki T., Hashimoto Y., Yabuuchi E.. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol39:224–229 [CrossRef]
    [Google Scholar]
  12. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  13. Felsenstein J.. 1993; phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington; Seattle, USA:
  14. Hall T. A.. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser41:95–98
    [Google Scholar]
  15. Hwang Y. M., Baik K. S., Seong C. N.. 2014; Mucilaginibacter defluvii sp. nov., isolated from a dye wastewater treatment facility. Int J Syst Evol Microbiol64:565–571 [CrossRef][PubMed]
    [Google Scholar]
  16. Kim J. H., Kang S. J., Jung Y. T., Oh T. K., Yoon J. H.. 2012a; Mucilaginibacter lutimaris sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol62:515–519 [CrossRef][PubMed]
    [Google Scholar]
  17. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012b; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  18. Kimura M.. 1983; The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  19. Kluge A. G., Farris J. S.. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool18:1–32 [CrossRef]
    [Google Scholar]
  20. Ludwig W., Euzéby J., Whitman W. B.. 2011; Taxonomic outlines of the phyla Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes . In Bergey's Manual of Systematic Bacteriology, 2nd edn. pp21–24Edited by Whitman W.. Baltimore: Williams & Wilkins;
    [Google Scholar]
  21. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  22. Murray R. G. E., Doetsch R. N., Robinow C. F.. 1994; Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology pp21–41Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, D.C: American Society for Microbiology;
    [Google Scholar]
  23. Nokhal T.-H., Schlegel H. G.. 1983; Taxonomic study of Paracoccus denitrificans . Int J Syst Bacteriol33:26–37 [CrossRef]
    [Google Scholar]
  24. Pankratov T. A., Tindall B. J., Liesack W., Dedysh S. N.. 2007; Mucilaginibacter paludis gen. nov., sp. nov. and Mucilaginibacter gracilis sp. nov., pectin-, xylan- and laminarin-degrading members of the family Sphingobacteriaceae from acidic Sphagnum peat bog. Int J Syst Evol Microbiol57:2349–2354 [CrossRef][PubMed]
    [Google Scholar]
  25. Powers E. M.. 1995; Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol61:3756–3758[PubMed]
    [Google Scholar]
  26. Reichenbach H.. 1992; The order Cytophagales . In The Prokaryotes, 2nd edn. pp3631–3675Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H.. New York: Springer;[CrossRef]
    [Google Scholar]
  27. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  28. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  29. Schlegel H. G., Lafferty R., Krauss I.. 1970; The isolation of mutants not accumulating poly-β-hydroxybutyric acid. Arch Mikrobiol71:283–294 [CrossRef][PubMed]
    [Google Scholar]
  30. Schmidt K., Connor A., Britton G.. 1994; Analysis of pigments: carotenoids and related polyenes. In Chemical Methods in Prokaryotic Systematics pp403–461Edited by Goodfellow M., O'Donnell A. G.. Chichester: Wiley;
    [Google Scholar]
  31. Spiekermann P., Rehm B. H. A., Kalscheuer R., Baumeister D., Steinbüchel A.. 1999; A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol171:73–80 [CrossRef][PubMed]
    [Google Scholar]
  32. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  33. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  34. Tindall B. J., Sikorski J., Smibert R. A., Krieg N. R.. 2007; Phenotypic characterization and the principles of comparative systematic. In Methods for General and Molecular Bacteriology, 3rd edn. pp330–393Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R.. Washington, D.C: American Society for Microbiology;
    [Google Scholar]
  35. Urai M., Aizawa T., Nakagawa Y., Nakajima M., Sunairi M.. 2008; Mucilaginibacter kameinonensis sp., nov., isolated from garden soil. Int J Syst Evol Microbiol58:2046–2050 [CrossRef][PubMed]
    [Google Scholar]
  36. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., other authors. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches of bacterial systematics. Int J Syst Bacteriol37:463–464 [CrossRef]
    [Google Scholar]
  37. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol173:697–703[PubMed]
    [Google Scholar]
  38. Wen C. M., Tseng C. S., Cheng C. Y., Li Y. K.. 2002; Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. Biotechnol Appl Biochem35:213–219 [CrossRef][PubMed]
    [Google Scholar]
  39. Yoon J. H., Kang S. J., Park S., Oh T. K.. 2012; Mucilaginibacter litoreus sp. nov., isolated from marine sand. Int J Syst Evol Microbiol62:2822–2827 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000838
Loading
/content/journal/ijsem/10.1099/ijsem.0.000838
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error