1887

Abstract

A Gram-stain-positive, non-motile, aerobic and terminal-endospore-forming rod-shaped bacterium, strain P5-1, was isolated from the hindgut of a wood-feeding higher termite, sp. Phylogenetic analysis of 16S rRNA gene sequences showed that the strain was closely related to CCM 7311 (97.5 % similarity). Growth was observed at 10–40 °C (optimum, 30 °C) and at pH 5.5–9.0 (optimum, pH 7.5). The DNA G+C content of strain P5-1 was 48.9 mol%. Cells contained menaquinone 7 (MK-7) as the sole respiratory quinone and the major fatty acids were anteiso-C and iso-C. The cellular polar lipids comprised phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, one unidentified phospholipid, one unidentified glycolipid and one unidentified aminophospholipid. The diamino acid of the cell-wall peptidoglycan was -diaminopimelic acid. Based on the phylogenetic, chemotaxonomic and phenotypic data obtained within this study, strain P5-1 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is P5-1 ( = CGMCC 1.15178 = NBRC 111536).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000807
2016-02-01
2020-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/901.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000807&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. 1990; Basic local alignment search tool. J Mol Biol215:403–410 [CrossRef][PubMed]
    [Google Scholar]
  2. Ash C., Priest F. G., Collins M. D.. 1993; Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek64:253–260 [CrossRef][PubMed]
    [Google Scholar]
  3. Barrow G. I., Feltham R. K. A.. 1993; Cowan and Steel's Manual for Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  4. Chen W., Wang B., Hong H., Yang H., Liu S.-J.. 2012; Deinococcus reticulitermitis sp. nov., isolated from a termite gut. Int J Syst Evol Microbiol62:78–83 [CrossRef][PubMed]
    [Google Scholar]
  5. Collins M. D.. 1985; Isoprenoid quinone analysis in classification and identification. In Chemical Methods in Bacterial Systematics pp267–287Edited by Goodfellow M., Minnikin D. E.. London: Academic Press;
    [Google Scholar]
  6. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–791 [CrossRef]
    [Google Scholar]
  7. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  8. Gerhardt P., Murray R. G. E, Wood W. A., Krieg N. R.. 1994; Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  9. Glaeser S. P., Falsen E., Busse H. J., Kämpfer P.. 2013; Paenibacillus vulneris sp. nov., isolated from a necrotic wound. Int J Syst Evol Microbiol63:777–782 [CrossRef][PubMed]
    [Google Scholar]
  10. Horn M. A., Ihssen J., Matthies C., Schramm A., Acker G., Drake H. L.. 2005; Dechloromonas denitrificans sp. nov., Flavobacterium denitrificans sp. nov., Paenibacillus anaericanus sp. nov. and Paenibacillus terrae strain MH72, N2O-producing bacteria isolated from the gut of the earthworm Aporrectodea caliginosa. Int J Syst Evol Microbiol55:1255–1265 [CrossRef][PubMed]
    [Google Scholar]
  11. Huang Z., Chen X., Shi Y., Shen Z., Peng J., Yang H.. 2011; Molecular analysis of some Chinese termites based on mitochondrial cytochome oxidase (CoII) gene. Sociobiology58:107–118
    [Google Scholar]
  12. Kämpfer P., Falsen E., Lodders N., Martin K., Kassmannhuber J., Busse H.-J.. 2012; Paenibacillus chartarius sp. nov., isolated from a paper mill. Int J Syst Evol Microbiol62:1342–1347 [CrossRef][PubMed]
    [Google Scholar]
  13. Kim K. K., Lee K. C., Yu H., Ryoo S., Park Y., Lee J. S.. 2010; Paenibacillus sputi sp. nov., isolated from the sputum of a patient with pulmonary disease. Int J Syst Evol Microbiol60:2371–2376 [CrossRef][PubMed]
    [Google Scholar]
  14. Kimura M.. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  15. Komagata K., Suzuki K.. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol19:177–182
    [Google Scholar]
  16. Kong B. H., Liu Q. F., Liu M., Liu Y., Liu L., Li C. L., Yu R., Li Y. H.. 2013; Paenibacillus typhae sp. nov., isolated from roots of Typha angustifolia L. Int J Syst Evol Microbiol63:1037–1044 [CrossRef][PubMed]
    [Google Scholar]
  17. Lane D. J.. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp115–175Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;
    [Google Scholar]
  18. Lányí B.. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol19:1–67 [CrossRef]
    [Google Scholar]
  19. Marmur J., Doty P.. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol5:109–118 [CrossRef][PubMed]
    [Google Scholar]
  20. Marshall B. J., Ohye D. F.. 1966; Bacillus macquariensis n.sp., a psychrotrophic bacterium from sub-antarctic soil. J Gen Microbiol44:41–46 [CrossRef][PubMed]
    [Google Scholar]
  21. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  22. Montes M. J., Mercadé E., Bozal N., Guinea J.. 2004; Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the Antarctic environment. Int J Syst Evol Microbiol54:1521–1526 [CrossRef][PubMed]
    [Google Scholar]
  23. Saha P., Krishnamurthi S., Bhattacharya A., Sharma R., Chakrabarti T.. 2010; Fontibacillus aquaticus gen. nov., sp. nov., isolated from a warm spring. Int J Syst Evol Microbiol60:422–428 [CrossRef][PubMed]
    [Google Scholar]
  24. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  25. Sasser M.. 1990; Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  26. Schaeffer A. B., Fulton M. D.. 1933; A simplified method of staining endospores. Science77:194 [CrossRef][PubMed]
    [Google Scholar]
  27. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K.. 1997; Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol47:289–298 [CrossRef][PubMed]
    [Google Scholar]
  28. Šmerda J., Sedlácek I., Pácová Z., Krejcí E., Havel L.. 2006; Paenibacillus sepulcri sp. nov., isolated from biodeteriorated mural paintings in the Servilia tomb. Int J Syst Evol Microbiol56:2341–2344 [CrossRef][PubMed]
    [Google Scholar]
  29. Smibert R. M., Krieg N. R.. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp607–654Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  30. Tamura K., Dudley J., Nei M., Kumar S.. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  31. Tang Q. Y., Yang N., Wang J., Xie Y. Q., Ren B., Zhou Y. G., Gu M. Y., Mao J., Li W. J., other authors. 2011; Paenibacillus algorifonticola sp. nov., isolated from a cold spring. Int J Syst Evol Microbiol61:2167–2172 [CrossRef][PubMed]
    [Google Scholar]
  32. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  33. Tindall B. J.. 1990; Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett66:199–202 [CrossRef]
    [Google Scholar]
  34. Tittsler R. P., Sandholzer L. A.. 1936; The use of semi-solid agar for the detection of bacterial motility. J Bacteriol31:575–580[PubMed]
    [Google Scholar]
  35. Vaz-Moreira I., Figueira V., Lopes A. R., Pukall R., Spröer C., Schumann P., Nunes O. C., Manaia C. M.. 2010; Paenibacillus residui sp. nov., isolated from urban waste compost. Int J Syst Evol Microbiol60:2415–2419 [CrossRef][PubMed]
    [Google Scholar]
  36. Wu Y. F., Wu Q. L., Liu S. J.. 2013; Paenibacillus taihuensis sp. nov., isolated from an eutrophic lake. Int J Syst Evol Microbiol63:3652–3658 [CrossRef][PubMed]
    [Google Scholar]
  37. Yoon J. H., Kang S. J., Yeo S. H., Oh T. K.. 2005; Paenibacillus alkaliterrae sp. nov., isolated from an alkaline soil in Korea. Int J Syst Evol Microbiol55:2339–2344 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000807
Loading
/content/journal/ijsem/10.1099/ijsem.0.000807
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error