1887

Abstract

A bacterial strain, designated SH7, was isolated from the hydrocarbon-contaminated soil of a pilot plant (Granada, Spain). The strain was selected for its capacity to grow in media supplemented with methyl -butyl ether (MTBE) as sole energy and carbon source. Strain SH7 was a Gram-stain-positive, facultatively anaerobic, spore-forming, rod-shaped bacterium. Phylogenetic analysis using 16S rRNA gene sequences showed that strain SH7 belongs to a cluster comprising species of the genus and was closely related to KK19 (97 % 16S rRNA gene sequence similarity) and TOD45 (98 %). DNA–DNA hybridization tests showed low relatedness of strain SH7 with the type strains of (16.9 ± 1.5 %) and (16.6 ± 2.1 %). The cell wall of strain SH7 contained -diaminopimelic acid. The predominant respiratory quinone was MK-7, and anteiso-C15 : 0 (32.9 %) and C16 : 0 (29.0 %) were the predominant cellular fatty acids. Phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol and three unknown aminophospholipids were the major phospholipids. The DNA G+C content was 44.3 mol%. Data obtained in this study indicate that strain SH7 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is SH7 ( = CECT 8558 = DSM 29760).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000802
2016-02-01
2020-04-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/862.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000802&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J.. 1997; Gapped blast psi-blast: a new generation of protein database search programs. Nucleic Acids Res25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  2. Ash C., Priest F. G., Collins M. D.. 1993; Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus . Antonie van Leeuwenhoek64:253–260 [CrossRef][PubMed]
    [Google Scholar]
  3. Barrow G. I., Feltham R. K. A.. editors 1993; Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd edn.. Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  4. Berge O., Guinebretière M.-H., Achouak W., Normand P., Heulin T.. 2002; Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int J Syst Evol Microbiol52:607–616 [CrossRef][PubMed]
    [Google Scholar]
  5. Cashion P., Holder-Franklin M. A., McCully J., Franklin M.. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem81:461–466 [CrossRef][PubMed]
    [Google Scholar]
  6. Daane L. L., Harjono I., Barns S. M., Launen L. A., Palleroni N. J., Häggblom M. M.. 2002; PAH-degradation by Paenibacillus spp. and description of Paenibacillus naphthalenovorans sp. nov., a naphthalene-degrading bacterium from the rhizosphere of salt marsh plants. Int J Syst Evol Microbiol52:131–139 [CrossRef][PubMed]
    [Google Scholar]
  7. De Ley J., Cattoir H., Reynaerts A.. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  8. Elo S., Suominen I., Kampfer P., Juhanoja J., Salkinoja-Salonen M., Haahtela K.. 2001; Paenibacillus borealis sp. nov., a nitrogen fixing species isolated from spruce forest humus in Finland. Int J Syst Evol Microbiol51:535–545[CrossRef]
    [Google Scholar]
  9. François A., Mathis H., Godefroy D., Piveteau P., Fayolle F., Monot F.. 2002; Biodegradation of methyl tert-butyl ether and other fuel oxygenates by a new strain, Mycobacterium austroafricanum IFP 2012. Appl Environ Microbiol68:2754–2762 [CrossRef][PubMed]
    [Google Scholar]
  10. Goesaert H., Brijs K., Veraverbeke W. S., Courtin C. M., Gebruers K., Delcour J. A.. 2005; Wheat flour constituents: how they impact bread quality, and how to impact their functionality. Trends Food Sci Technol16:12–30 [CrossRef]
    [Google Scholar]
  11. Guisado I. M., Purswani J., González-López J., Pozo C.. 2015; Physiological and genetic screening methods for the isolation of methyl tert-butyl ether-degrading bacteria for bioremediation purposes. Int Biodeterior Biodegradation97:67–74 [CrossRef]
    [Google Scholar]
  12. Herman D. C., Frankenberger W. T.. 1999; Bacterial reduction of perchlorate and nitrate in water. J Environ Qual28:1018–1024 [CrossRef]
    [Google Scholar]
  13. Huss V. A. R, Festl H., Schleifer K. H.. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol4:184–192 [CrossRef][PubMed]
    [Google Scholar]
  14. Kharoune M., Pauss A., Lebeault J. M.. 2001; Aerobic biodegradation of an oxygenates mixture: ETBE, MTBE and TAME in an upflow fixed-bed reactor. Water Res35:1665–1674 [CrossRef][PubMed]
    [Google Scholar]
  15. Khianngam S., Tanasupawat S., Akaracharanya A., Kim K. K., Lee K. C., Lee J. S.. 2011; Paenibacillus xylanisolvens sp. nov., a xylan-degrading bacterium from soil. Int J Syst Evol Microbiol61:160–164 [CrossRef][PubMed]
    [Google Scholar]
  16. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A., other authors. 2007; clustal w clustal_x version 2.0. Bioinformatics23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  17. Liu C. Y., Speitel G. E. Jr., Georgiou G.. 2001; Kinetics of methyl t-butyl ether cometabolism at low concentrations by pure cultures of butane-degrading bacteria. Appl Environ Microbiol67:2197–2201 [CrossRef][PubMed]
    [Google Scholar]
  18. Margeot A., Hahn-Hagerdal B., Edlund M., Slade R., Monot F.. 2009; New improvements for lignocellulosic ethanol. Curr Opin Biotechnol20:372–380 [CrossRef][PubMed]
    [Google Scholar]
  19. Martín-Platero A. M., Valdivia E., Maqueda M., Martínez-Bueno M.. 2007; Fast, convenient, and economical method for isolating genomic DNA from lactic acid bacteria using a modification of the protein “salting-out” procedure. Anal Biochem366:102–104 [CrossRef][PubMed]
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  21. Polizeli M. L. T. M., Rizzatti A. C. S, Monti R., Terenzi H. F., Jorge J. A., Amorim D. S.. 2005; Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol67:577–591 [CrossRef][PubMed]
    [Google Scholar]
  22. Purswani J., Pozo C., Rodríguez-Díaz M., González-López J.. 2008; Selection and identification of bacterial strains with methyl-tert-butyl ether, ethyl-tert-butyl ether, and tert-amyl methyl ether degrading capacities. Environ Toxicol Chem27:2296–2303 [CrossRef][PubMed]
    [Google Scholar]
  23. Rai S. K., Roy J. K., Mukherjee A. K.. 2010; Characterisation of a detergent-stable alkaline protease from a novel thermophilic strain Paenibacillus tezpurensis sp. nov. AS-S24-II. Appl Microbiol Biotechnol85:1437–1450 [CrossRef][PubMed]
    [Google Scholar]
  24. Reynolds E. S.. 1963; The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol17:208–212[CrossRef]
    [Google Scholar]
  25. Roncero M. B., Torres A. L., Colom J. F., Vidal T.. 2005; The effect of xylanase on lignocellulosic components during the bleaching of wood pulps. Bioresour Technol96:21–30 [CrossRef][PubMed]
    [Google Scholar]
  26. Roux V., Raoult D.. 2004; Paenibacillus massiliensis sp. nov., Paenibacillus sanguinis sp. nov. and Paenibacillus timonensis sp. nov., isolated from blood cultures. Int J Syst Evol Microbiol54:1049–1054 [CrossRef][PubMed]
    [Google Scholar]
  27. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  28. Scheldeman P., Goossens K., Rodríguez-Diaz M., Pil A., Goris J., Herman L., De Vos P., Logan N. A., Heyndrickx M.. 2004; Paenibacillus lactis sp. nov., isolated from raw and heat-treated milk. Int J Syst Evol Microbiol54:885–891 [CrossRef][PubMed]
    [Google Scholar]
  29. Schumann P.. 2011; Peptidoglycan structure. Methods Microbiol38:101–129 [CrossRef]
    [Google Scholar]
  30. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K.. 1997; Transfer of Bacillus alginolyticus, Bacillus chondroitinus , Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus . Int J Syst Bacteriol47:289–298 [CrossRef][PubMed]
    [Google Scholar]
  31. Silva-Castro G. A., Rodelas B., Perucha C., Laguna J., González-López J., Calvo C.. 2013; Bioremediation of diesel-polluted soil using biostimulation as post-treatment after oxidation with Fenton-like reagents: assays in a pilot plant. Sci Total Environ445-446:347–355 [CrossRef][PubMed]
    [Google Scholar]
  32. Sirota-Madi A., Olender T., Helman Y., Ingham C., Brainis I., Roth D., Hagi E., Brodsky L., Leshkowitz D., other authors. 2010; Genome sequence of the pattern forming Paenibacillus vortex bacterium reveals potential for thriving in complex environments. BMC Genomics11:710 [CrossRef][PubMed]
    [Google Scholar]
  33. Soriano M., Díaz P., Pastor F. I.. 2005; Pectinolytic systems of two aerobic sporogenous bacterial strains with high activity on pectin. Curr Microbiol50:114–118 [CrossRef][PubMed]
    [Google Scholar]
  34. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol28:2731–2739 [CrossRef][PubMed]
    [Google Scholar]
  35. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D, Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C, Murray R. G. E, other authors. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol37:463–464 [CrossRef]
    [Google Scholar]
  36. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol173:697–703[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000802
Loading
/content/journal/ijsem/10.1099/ijsem.0.000802
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error