1887

Abstract

A bacterial strain, designated SH7, was isolated from the hydrocarbon-contaminated soil of a pilot plant (Granada, Spain). The strain was selected for its capacity to grow in media supplemented with methyl -butyl ether (MTBE) as sole energy and carbon source. Strain SH7 was a Gram-stain-positive, facultatively anaerobic, spore-forming, rod-shaped bacterium. Phylogenetic analysis using 16S rRNA gene sequences showed that strain SH7 belongs to a cluster comprising species of the genus and was closely related to KK19 (97 % 16S rRNA gene sequence similarity) and TOD45 (98 %). DNA–DNA hybridization tests showed low relatedness of strain SH7 with the type strains of (16.9 ± 1.5 %) and (16.6 ± 2.1 %). The cell wall of strain SH7 contained -diaminopimelic acid. The predominant respiratory quinone was MK-7, and anteiso-C15 : 0 (32.9 %) and C16 : 0 (29.0 %) were the predominant cellular fatty acids. Phosphatidylglycerol, phosphatidylethanolamine, diphosphatidylglycerol and three unknown aminophospholipids were the major phospholipids. The DNA G+C content was 44.3 mol%. Data obtained in this study indicate that strain SH7 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is SH7 ( = CECT 8558 = DSM 29760).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000802
2016-02-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/862.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000802&mimeType=html&fmt=ahah

References

  1. Altschul S. F. , Madden T. L. , Schäffer A. A. , Zhang J. , Zhang Z. , Miller W. , Lipman D. J. . ( 1997;). Gapped blast psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402 [CrossRef] [PubMed].
    [Google Scholar]
  2. Ash C. , Priest F. G. , Collins M. D. . ( 1993;). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus . Antonie van Leeuwenhoek 64: 253–260 [CrossRef] [PubMed].
    [Google Scholar]
  3. Barrow G. I. , Feltham R. K. A. . (editors) ( 1993;). Cowan and Steel's Manual for the Identification of Medical Bacteria , 3rd edn.. Cambridge: Cambridge University Press; [CrossRef].
    [Google Scholar]
  4. Berge O. , Guinebretière M.-H. , Achouak W. , Normand P. , Heulin T. . ( 2002;). Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int J Syst Evol Microbiol 52: 607–616 [CrossRef] [PubMed].
    [Google Scholar]
  5. Cashion P. , Holder-Franklin M. A. , McCully J. , Franklin M. . ( 1977;). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81: 461–466 [CrossRef] [PubMed].
    [Google Scholar]
  6. Daane L. L. , Harjono I. , Barns S. M. , Launen L. A. , Palleroni N. J. , Häggblom M. M. . ( 2002;). PAH-degradation by Paenibacillus spp. and description of Paenibacillus naphthalenovorans sp. nov., a naphthalene-degrading bacterium from the rhizosphere of salt marsh plants. Int J Syst Evol Microbiol 52: 131–139 [CrossRef] [PubMed].
    [Google Scholar]
  7. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12: 133–142 [CrossRef] [PubMed].
    [Google Scholar]
  8. Elo S. , Suominen I. , Kampfer P. , Juhanoja J. , Salkinoja-Salonen M. , Haahtela K. . ( 2001;). Paenibacillus borealis sp. nov., a nitrogen fixing species isolated from spruce forest humus in Finland. Int J Syst Evol Microbiol 51: 535–545.[CrossRef]
    [Google Scholar]
  9. François A. , Mathis H. , Godefroy D. , Piveteau P. , Fayolle F. , Monot F. . ( 2002;). Biodegradation of methyl tert-butyl ether and other fuel oxygenates by a new strain, Mycobacterium austroafricanum IFP 2012. Appl Environ Microbiol 68: 2754–2762 [CrossRef] [PubMed].
    [Google Scholar]
  10. Goesaert H. , Brijs K. , Veraverbeke W. S. , Courtin C. M. , Gebruers K. , Delcour J. A. . ( 2005;). Wheat flour constituents: how they impact bread quality, and how to impact their functionality. Trends Food Sci Technol 16: 12–30 [CrossRef].
    [Google Scholar]
  11. Guisado I. M. , Purswani J. , González-López J. , Pozo C. . ( 2015;). Physiological and genetic screening methods for the isolation of methyl tert-butyl ether-degrading bacteria for bioremediation purposes. Int Biodeterior Biodegradation 97: 67–74 [CrossRef].
    [Google Scholar]
  12. Herman D. C. , Frankenberger W. T. . ( 1999;). Bacterial reduction of perchlorate and nitrate in water. J Environ Qual 28: 1018–1024 [CrossRef].
    [Google Scholar]
  13. Huss V. A. R , Festl H. , Schleifer K. H. . ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4: 184–192 [CrossRef] [PubMed].
    [Google Scholar]
  14. Kharoune M. , Pauss A. , Lebeault J. M. . ( 2001;). Aerobic biodegradation of an oxygenates mixture: ETBE, MTBE and TAME in an upflow fixed-bed reactor. Water Res 35: 1665–1674 [CrossRef] [PubMed].
    [Google Scholar]
  15. Khianngam S. , Tanasupawat S. , Akaracharanya A. , Kim K. K. , Lee K. C. , Lee J. S. . ( 2011;). Paenibacillus xylanisolvens sp. nov., a xylan-degrading bacterium from soil. Int J Syst Evol Microbiol 61: 160–164 [CrossRef] [PubMed].
    [Google Scholar]
  16. Larkin M. A. , Blackshields G. , Brown N. P. , Chenna R. , McGettigan P. A. , McWilliam H. , Valentin F. , Wallace I. M. , Wilm A. , other authors . ( 2007;). clustal w clustal_x version 2.0. Bioinformatics 23: 2947–2948 [CrossRef] [PubMed].
    [Google Scholar]
  17. Liu C. Y. , Speitel G. E. Jr. , Georgiou G. . ( 2001;). Kinetics of methyl t-butyl ether cometabolism at low concentrations by pure cultures of butane-degrading bacteria. Appl Environ Microbiol 67: 2197–2201 [CrossRef] [PubMed].
    [Google Scholar]
  18. Margeot A. , Hahn-Hagerdal B. , Edlund M. , Slade R. , Monot F. . ( 2009;). New improvements for lignocellulosic ethanol. Curr Opin Biotechnol 20: 372–380 [CrossRef] [PubMed].
    [Google Scholar]
  19. Martín-Platero A. M. , Valdivia E. , Maqueda M. , Martínez-Bueno M. . ( 2007;). Fast, convenient, and economical method for isolating genomic DNA from lactic acid bacteria using a modification of the protein “salting-out” procedure. Anal Biochem 366: 102–104 [CrossRef] [PubMed].
    [Google Scholar]
  20. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  21. Polizeli M. L. T. M. , Rizzatti A. C. S , Monti R. , Terenzi H. F. , Jorge J. A. , Amorim D. S. . ( 2005;). Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67: 577–591 [CrossRef] [PubMed].
    [Google Scholar]
  22. Purswani J. , Pozo C. , Rodríguez-Díaz M. , González-López J. . ( 2008;). Selection and identification of bacterial strains with methyl-tert-butyl ether, ethyl-tert-butyl ether, and tert-amyl methyl ether degrading capacities. Environ Toxicol Chem 27: 2296–2303 [CrossRef] [PubMed].
    [Google Scholar]
  23. Rai S. K. , Roy J. K. , Mukherjee A. K. . ( 2010;). Characterisation of a detergent-stable alkaline protease from a novel thermophilic strain Paenibacillus tezpurensis sp. nov. AS-S24-II. Appl Microbiol Biotechnol 85: 1437–1450 [CrossRef] [PubMed].
    [Google Scholar]
  24. Reynolds E. S. . ( 1963;). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17: 208–212.[CrossRef]
    [Google Scholar]
  25. Roncero M. B. , Torres A. L. , Colom J. F. , Vidal T. . ( 2005;). The effect of xylanase on lignocellulosic components during the bleaching of wood pulps. Bioresour Technol 96: 21–30 [CrossRef] [PubMed].
    [Google Scholar]
  26. Roux V. , Raoult D. . ( 2004;). Paenibacillus massiliensis sp. nov., Paenibacillus sanguinis sp. nov. and Paenibacillus timonensis sp. nov., isolated from blood cultures. Int J Syst Evol Microbiol 54: 1049–1054 [CrossRef] [PubMed].
    [Google Scholar]
  27. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  28. Scheldeman P. , Goossens K. , Rodríguez-Diaz M. , Pil A. , Goris J. , Herman L. , De Vos P. , Logan N. A. , Heyndrickx M. . ( 2004;). Paenibacillus lactis sp. nov., isolated from raw and heat-treated milk. Int J Syst Evol Microbiol 54: 885–891 [CrossRef] [PubMed].
    [Google Scholar]
  29. Schumann P. . ( 2011;). Peptidoglycan structure. Methods Microbiol 38: 101–129 [CrossRef].
    [Google Scholar]
  30. Shida O. , Takagi H. , Kadowaki K. , Nakamura L. K. , Komagata K. . ( 1997;). Transfer of Bacillus alginolyticus, Bacillus chondroitinus , Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus . Int J Syst Bacteriol 47: 289–298 [CrossRef] [PubMed].
    [Google Scholar]
  31. Silva-Castro G. A. , Rodelas B. , Perucha C. , Laguna J. , González-López J. , Calvo C. . ( 2013;). Bioremediation of diesel-polluted soil using biostimulation as post-treatment after oxidation with Fenton-like reagents: assays in a pilot plant. Sci Total Environ 445-446: 347–355 [CrossRef] [PubMed].
    [Google Scholar]
  32. Sirota-Madi A. , Olender T. , Helman Y. , Ingham C. , Brainis I. , Roth D. , Hagi E. , Brodsky L. , Leshkowitz D. , other authors . ( 2010;). Genome sequence of the pattern forming Paenibacillus vortex bacterium reveals potential for thriving in complex environments. BMC Genomics 11: 710 [CrossRef] [PubMed].
    [Google Scholar]
  33. Soriano M. , Díaz P. , Pastor F. I. . ( 2005;). Pectinolytic systems of two aerobic sporogenous bacterial strains with high activity on pectin. Curr Microbiol 50: 114–118 [CrossRef] [PubMed].
    [Google Scholar]
  34. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  35. Wayne L. G. , Brenner D. J. , Colwell R. R. , Grimont P. A. D , Kandler O. , Krichevsky M. I. , Moore L. H. , Moore W. E. C , Murray R. G. E , other authors . ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37: 463–464 [CrossRef].
    [Google Scholar]
  36. Weisburg W. G. , Barns S. M. , Pelletier D. A. , Lane D. J. . ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173: 697–703 [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000802
Loading
/content/journal/ijsem/10.1099/ijsem.0.000802
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error