1887

Abstract

In total, 31 strains of Gram-stain-negative, rod-shaped bacteria were isolated from root nodules and authenticated as rhizobia on this host. Based on 16S rRNA gene phylogeny, they were shown to belong to the genus , with the representative strains ICMP 19560, ICMP 19523, ICMP 19535, ICMP 19545 and ICMP 19512 being related most closely to SCAU7 (99.9–99.6 % similarity), ICMP 19515 (99.7–99.6 %) and UMP-CA7 (99.7–99.5 %). Additionally, the novel strains formed distinct groups based on housekeeping gene sequence analysis and were closely related to ICMP 19557 (93.5–94.9, 92.5–95.6 and 94.2–96.0 %), ICMP 19515 (93.1–97.7, 93.5–95.4 and 94.8–96.8 %) and UMP-CA7 (93.2–97.2, 94.6–96.8 and 95.5–97.3 %) for , and , respectively. Chemotaxonomic data supported the assignment of the strains to the genus , and DNA–DNA hybridizations, matrix-assisted laser desorption/ionization time-of-flight MS analysis, enterobacterial repetitive intergenic consensus PCR, physiological and biochemical tests allowed the genotypic and phenotypic differentiation from their nearest neighbouring species. Therefore, these strains represent five novel species for which the names sp. nov. (type strain ICMP 19560 = LMG 28224 = HAMBI 3609), sp. nov. (type strain ICMP 19523 = LMG 28227 = HAMBI 3605), sp. nov. (type strain ICMP 19535 = LMG 28223 = HAMBI 3606), sp. nov. (type strain ICMP 19545 = LMG 28226 = HAMBI 3607) and sp. nov. (type strain ICMP 19512 = LMG 28222 = HAMBI 3603) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000796
2016-02-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/786.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000796&mimeType=html&fmt=ahah

References

  1. De Meyer S. E. , Tan H. W. , Heenan P. B. , Andrews M. , Willems A. . ( 2015;). Mesorhizobium waimense sp. nov. isolated from Sophora longicarinata root nodules and Mesorhizobium cantuariense sp. nov. isolated from Sophora microphylla root nodules. Int J Syst Evol Microbiol 65: 3419–3426 [PubMed].[CrossRef]
    [Google Scholar]
  2. Dice L. R. . ( 1945;). Measures of the amount of ecologic association between species. Ecology 26: 297–302 [CrossRef].
    [Google Scholar]
  3. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224–229 [CrossRef].
    [Google Scholar]
  4. Farris J. S. , Källersjö M. , Kluge A. G. , Bult C. . ( 1994;). Testing significance of incongruence. Cladistics 10: 315–319 [CrossRef].
    [Google Scholar]
  5. Gao J.-L. , Turner S. L. , Kan F. L. , Wang E. T. , Tan Z. Y. , Qiu Y. H. , Gu J. , Terefework Z. , Young J. P. W , other authors . ( 2004;). Mesorhizobium septentrionale sp. nov. and Mesorhizobium temperatum sp. nov., isolated from Astragalus adsurgens growing in the northern regions of China. Int J Syst Evol Microbiol 54: 2003–2012 [CrossRef] [PubMed].
    [Google Scholar]
  6. Gouy M. , Guindon S. , Gascuel O. . ( 2010;). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol 27: 221–224 [CrossRef] [PubMed].
    [Google Scholar]
  7. Heenan P. B. . ( 2000;). Clianthus (Fabaceae) in New Zealand: a reappraisal of Colenso's taxonomy. NZ J Bot 38: 361–371 [CrossRef].
    [Google Scholar]
  8. Heenan P. B. , de Lange P. J. , Wilton A. D. . ( 2001;). Sophora (Fabaceae) in New Zealand: taxonomy, distribution, and biogeography. NZ J Bot 39: 17–53 [CrossRef].
    [Google Scholar]
  9. Heenan P. B. , Dawson M. I. , Wagstaff S. J. . ( 2004;). The relationship of Sophora sect. Edwardsia (Fabaceae) to Sophora tomentosa, the type species of the genus Sophora, observed from DNA sequence data and morphological characters. Bot J Linn Soc 146: 439–446 [CrossRef].
    [Google Scholar]
  10. Jarvis B. D. W , Van Berkum P. , Chen W. X. , Nour S. M. , Fernandez M. P. , Cleyet-Marel J. C. , Gillis M. . ( 1997;). Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum, Rhizobium tianshanense to Mesorhizobium gen. nov.. Int J Syst Bacteriol 47: 895–898.[CrossRef]
    [Google Scholar]
  11. Jiao Y. S. , Yan H. , Ji Z. J. , Liu Y. H. , Sui X. H. , Zhang X. X. , Wang E. T. , Chen W. X. , Chen W. F. . ( 2015a;). Phyllobacterium sophorae sp. nov., a symbiotic bacterium isolated from root nodules of Sophora flavescens . Int J Syst Evol Microbiol 65: 399–406 [CrossRef] [PubMed].
    [Google Scholar]
  12. Jiao Y. S. , Yan H. , Ji Z. J. , Liu Y. H. , Sui X. H. , Wang E. T. , Guo B. L. , Chen W. X. , Chen W. F. . ( 2015b;). Rhizobium sophorae sp. nov. and Rhizobium sophoriradicis sp. nov., nitrogen-fixing rhizobial symbionts of the medicinal legume Sophora flavescens . Int J Syst Evol Microbiol 65: 497–503 [CrossRef] [PubMed].
    [Google Scholar]
  13. Kim O.-S. , Cho Y.-J. , Lee K. , Yoon S.-H. , Kim M. , Na H. , Park S.-C. , Jeon Y. S. , Lee J.-H. , other authors . ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  14. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989;). Precise measurement of the G+C content of deoxyribonucleic-acid by high-preformance liquid-chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  15. Nour S. M. , Fernandez M. P. , Normand P. , Cleyet-Marel J. C. . ( 1994;). Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). Int J Syst Bacteriol 44: 511–522 [CrossRef] [PubMed].
    [Google Scholar]
  16. Pitcher D. G. , Saunders N. A. , Owen R. J. . ( 1989;). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8: 151–156 [CrossRef].
    [Google Scholar]
  17. Swofford D. L. . ( 1991;). paup: Phylogenetic analysis using parsimony, version 3.1. Washington DC: Smithsonian Institution;.
  18. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  19. Tan H. W. , Heenan P. B. , De Meyer S. E. , Willems A. , Andrews M. . ( 2015;). Diverse novel mesorhizobia nodulate New Zealand native Sophora species. Syst Appl Microbiol 38: 91–98 [CrossRef] [PubMed].
    [Google Scholar]
  20. Tighe S. W. , de Lajudie P. , Dipietro K. , Lindström K. , Nick G. , Jarvis B. D. W . ( 2000;). Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50: 787–801 [CrossRef] [PubMed].
    [Google Scholar]
  21. Versalovic J. , Schneider M. , De Bruijn F. J. , Lupski J. R. . ( 1994;). Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5: 25–40.
    [Google Scholar]
  22. Vincent J. M. . ( 1970;). A Manual for the Practical Study of the Root-Nodule Bacteria, International Biological Programme Handbook , 15th edn. Oxford: Blackwell Scientific Pubilications;.
    [Google Scholar]
  23. Wagstaff S. J. , Heenan P. B. , Sanderson M. J. . ( 1999;). Classification, origins, and patterns of diversification in New Zealand Carmichaelinae (Fabaceae). Am J Bot 86: 1346–1356 [CrossRef] [PubMed].
    [Google Scholar]
  24. Weir B. S. , Turner S. J. , Silvester W. B. , Park D. C. , Young J. M. . ( 2004;). Unexpectedly diverse Mesorhizobium strains and Rhizobium leguminosarum nodulate native legume genera of New Zealand, while introduced legume weeds are nodulated by Bradyrhizobium species. Appl Environ Microbiol 70: 5980–5987 [CrossRef] [PubMed].
    [Google Scholar]
  25. Wieme A. , Cleenwerck I. , Van Landschoot A. , Vandamme P. . ( 2012;). Pediococcus lolii DSM 19927T and JCM 15055T are strains of Pediococcus acidilactici . Int J Syst Evol Microbiol 62: 3105–3108 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000796
Loading
/content/journal/ijsem/10.1099/ijsem.0.000796
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error