1887

Abstract

A novel bacterial strain, designated Teta-03, was isolated from a taro field in Taiwan and characterized using a polyphasic taxonomic approach. Cells of strain Teta-03 were aerobic, Gram-stain-negative, rod-shaped and non-motile and formed bright yellow colonies. Growth occurred at 10–37 °C (optimum, 20 °C), with 0–1.0 % (w/v) NaCl (optimum, 0 %) and at pH 3.0–9.0 (optimum, pH 7.0–8.0). The major fatty acids (>10 %) of strain Teta-03 were Cω7, summed feature 3 (Cω7 and/or Cω6) and C. The polar lipid profile consisted of phosphatidylglycerol, phosphatidylethanolamine, phosphatidylmonomethylethanolamine, phosphatidyldimethylethanolamine, sphingoglycolipid, phosphatidylcholine, an uncharacterized glycolipid and an uncharacterized aminolipid. The major polyamine was spermidine. The major isoprenoid quinone was Q-10. The DNA G+C content was 65.0 mol%. On the basis of 16S rRNA gene sequence analysis, strain Teta-03 was shown to belong to the genus and showed highest similarity to LL02 (96.8 %). Phenotypic characteristics of the novel strain also differed from those of the closest related species of the genus . On the basis of the genotypic, chemotaxonomic and phenotypic data, strain Teta-03 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is Teta-03 ( = LMG 27385 = KCTC 32255).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000771
2016-02-01
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/673.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000771&mimeType=html&fmt=ahah

References

  1. Beveridge T. J., Lawrence J. R., Murray R. G. E. 2007; Sampling and staining for light microscopy. In Methods for General and Molecular Bacteriology, 3rd edn. pp 19–33Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  2. Bowman J. P. 2000; Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov.. Int J Syst Evol Microbiol 50:1861–1868 [View Article][PubMed]
    [Google Scholar]
  3. Breznak J. A., Costilow R. N. 2007; Physicochemical factors in growth. In Methods for General and Molecular Bacteriology, 3rd edn. pp 309–329Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  4. Busse H. J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11:1–8 [View Article]
    [Google Scholar]
  5. Busse H. J., Bunka S., Hensel A., Lubitz W. 1997; Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47:698–708 [View Article]
    [Google Scholar]
  6. Chen W. M., Laevens S., Lee T. M., Coenye T., De Vos P., Mergeay M., Vandamme P. 2001; Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51:1729–1735 [View Article][PubMed]
    [Google Scholar]
  7. Cole J. R., Wang Q., Cardenas E., Fish J., Chai B., Farris R. J., Kulam-Syed-Mohideen A. S., McGarrell D. M., Marsh T., other authors. 2009; The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145 [CrossRef]
    [Google Scholar]
  8. Collins M. D. 1994; Isoprenoid quinones. In Chemical Methods in Prokaryotic Systematics pp 265–309Edited by Goodfellow M., O'Donnell A. G. Chichester: Wiley;
    [Google Scholar]
  9. Embley T. M., Wait R. 1994; Structural lipids of eubacteria. In Chemical Methods in Prokaryotic Systematics pp 121–161Edited by Goodfellow M., O'Donnell A. G. Chichester: Wiley;
    [Google Scholar]
  10. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  11. Felsenstein J. 1993; phylip (phylogeny inference package), version 3.5c. Distributed by the author Department of Genome Sciences, University of Washington, Seattle, USA;
    [Google Scholar]
  12. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  13. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62:716–721 [View Article][PubMed]
    [Google Scholar]
  14. Kimura M. 1983 Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [View Article]
    [Google Scholar]
  15. Kluge A. G., Farris F. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [View Article]
    [Google Scholar]
  16. Lee L. H., Azman A. S., Zainal N., Eng S. K., Fang C. M., Hong K., Chan K. G. 2014; Novosphingobium malaysiense sp. nov. isolated from mangrove sediment. Int J Syst Evol Microbiol 64:1194–1201 [View Article][PubMed]
    [Google Scholar]
  17. Lin S. Y., Hameed A., Liu Y. C., Hsu Y. H., Lai W. A., Huang H. I., Young C. C. 2014; Novosphingobium arabidopsis sp. nov., a novel DDT-resistant bacterium isolated from the Arabidopsis thaliana rhizosphere. Int J Syst Evol Microbiol 64:594–598 [View Article][PubMed]
    [Google Scholar]
  18. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the GC content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  19. Niharika N., Moskalikova H., Kaur J., Sedlackova M., Hampl A., Damborsky J., Prokop Z., Lal R. 2013; Novosphingobium barchaimii sp. nov., isolated from hexachlorocyclohexane-contaminated soil. Int J Syst Evol Microbiol 63:667–672 [View Article][PubMed]
    [Google Scholar]
  20. Nohynek L. J., Nurmiaho-Lassila E. L., Suhonen E. L., Busse H.-J., Mohammadi M., Hantula J., Rainey F., Salkinoja-Salonen M. S. 1996; Description of chlorophenol-degrading Pseudomonas sp. strains KF1T, KF3, and NKF1 as a new species of the genus Sphingomonas, Sphingomonas subarctica sp. nov. Int J Syst Bacteriol 46:1042–1055 [View Article][PubMed]
    [Google Scholar]
  21. Nokhal T. H., Schlegel H. G. 1983; Taxonomic study of Paracoccus denitrificans . Int J Syst Bacteriol 33:26–37 [View Article]
    [Google Scholar]
  22. Powers E. M. 1995; Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61:3756–3758[PubMed]
    [Google Scholar]
  23. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  24. Sasser M. 1990 Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  25. Suzuki S., Hiraishi A. 2007; Novosphingobium naphthalenivorans sp. nov., a naphthalene-degrading bacterium isolated from polychlorinated-dioxin-contaminated environments. J Gen Appl Microbiol 53:221–228 [View Article][PubMed]
    [Google Scholar]
  26. Takeuchi M., Hamana K., Hiraishi A. 2001; Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417 [View Article][PubMed]
    [Google Scholar]
  27. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  28. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  29. Tindall B. J., Sikorski J., Smibert R. A., Krieg N. R. 2007; Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Bacteriology, 3rd edn. pp 330–393Edited by Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R. Washington, DC: American Society for Microbiology; [View Article]
    [Google Scholar]
  30. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703[PubMed]
    [Google Scholar]
  31. Wen C. M., Tseng C. S., Cheng C. Y., Li Y. K. 2002; Purification, characterization and cloning of a chitinase from Bacillus sp. NCTU2. Biotechnol Appl Biochem 35:213–219 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000771
Loading
/content/journal/ijsem/10.1099/ijsem.0.000771
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error