1887

Abstract

A yellow, Gram-reaction-negative, non-motile, aerobic bacterium, designated D07, was isolated from a tundra soil near Ny-Ålesund, Svalbard archipelago, Norway (78° N). Growth occurred at 4–37 °C (optimum 28–30 °C) and at pH 6.0–9.0 (optimum pH 7.0–8.0). The strain produced flexirubin-type pigments. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain D07 belonged to the genus in the family . The 16S rRNA gene sequence of this strain showed 93.83 and 93.31 % sequence similarity, respectively, to those of C26 and X-65. Strain D07 contained anteiso-C (25.91 %), iso-C (16.05 %), iso-C 3-OH (9.64 %), iso-C (9.42 %) and iso-C (7.36 %) as the predominant cellular fatty acids, MK-6 as the major respiratory quinone and phosphatidylethanolamine, five unknown aminolipids and three unknown lipids as the main polar lipids. The DNA G+C content was 49.3 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic data, strain D07 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is D07 ( = CCTCC AB 2011160 = KCTC 42897). Emended descriptions of and are also provided.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000761
2016-02-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/609.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000761&mimeType=html&fmt=ahah

References

  1. Bauer A. W., Kirby W. M. M, Sherris J. C., Turck M.. ( 1966;). Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45: 493–496 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bernardet J. F., Nakagawa Y., Holmes B., Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes. ( 2002;). Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52: 1049–1070 [PubMed].
    [Google Scholar]
  3. Bernardet J. F., Vancanneyt M., Matte-Tailliez O., Grisez L., Tailliez P., Bizet C., Nowakowski M., Kerouault B., Swings J.. ( 2005;). Polyphasic study of Chryseobacterium strains isolated from diseased aquatic animals. Syst Appl Microbiol 28: 640–660 [CrossRef] [PubMed].
    [Google Scholar]
  4. Bowman J. P.. ( 2000;). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50: 1861–1868 [CrossRef] [PubMed].
    [Google Scholar]
  5. Busse H. J., Auling G.. ( 1988;). Polyamine pattern as a chemotaxonomic marker within the Proteobacteria. Syst Appl Microbiol 11: 1–8 [CrossRef].
    [Google Scholar]
  6. Busse H. J., Bunka S., Hensel A., Lubitz W.. ( 1997;). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. Int J Syst Bacteriol 47: 698–708 [CrossRef].
    [Google Scholar]
  7. Charimba G., Jooste P., Albertyn J., Hugo C.. ( 2013;). Chryseobacterium carnipullorum sp. nov., isolated from raw chicken. Int J Syst Evol Microbiol 63: 3243–3249 [CrossRef] [PubMed].
    [Google Scholar]
  8. Collins C. H., Lyne P. M.. ( 1984;). Microbiological Methods, 5th edn. London: Butterworth;.
    [Google Scholar]
  9. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100: 221–230 [CrossRef] [PubMed].
    [Google Scholar]
  10. de Beer H., Hugo C. J., Jooste P. J., Willems A., Vancanneyt M., Coenye T., Vandamme PAR.. ( 2005;). Chryseobacterium vrystaatense sp. nov., isolated from raw chicken in a chicken-processing plant. Int J Syst Evol Microbiol 55: 2149–2153 [CrossRef] [PubMed].
    [Google Scholar]
  11. Doetsch R. N.. ( 1981;). Determinative methods of light microscopy. . In Manual of Methods for General Bacteriology, pp. 21–33. Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. H.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  12. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  13. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  14. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  15. Hantsis-Zacharov E., Senderovich Y., Halpern M.. ( 2008;). Chryseobacterium bovis sp. nov., isolated from raw cow's milk. Int J Syst Evol Microbiol 58: 1024–1028 [CrossRef] [PubMed].
    [Google Scholar]
  16. Herzog P., Winkler I., Wolking D., Kämpfer P., Lipski A.. ( 2008;). Chryseobacterium ureilyticum sp. nov., Chryseobacterium gambrini sp. nov., Chryseobacterium pallidum sp. nov. and Chryseobacterium molle sp. nov., isolated from beer-bottling plants. Int J Syst Evol Microbiol 58: 26–33 [CrossRef] [PubMed].
    [Google Scholar]
  17. Hoang V. A., Kim Y. J., Nguyen N. L., Yang D. C.. ( 2013;). Chryseobacterium yeoncheonense sp. nov., with ginsenoside converting activity isolated from soil of a ginseng field. Arch Microbiol 195: 463–471 [CrossRef] [PubMed].
    [Google Scholar]
  18. Holmes B., Owen R. J., Steigerwalt A. G., Brenner D. J.. ( 1984;). Flavobacterium gleum, a new species found in human clinical specimens. Int J Syst Bacteriol 34: 21–25 [CrossRef].
    [Google Scholar]
  19. Holmes B., Steigerwalt A. G., Nicholson A. C.. ( 2013;). DNA–DNA hybridization study of strains of Chryseobacterium, Elizabethkingia and Empedobacter and of other usually indole-producing non-fermenters of CDC groups IIc, IIe, IIh and IIi, mostly from human clinical sources, and proposals of Chryseobacterium bernardetii sp. nov., Chryseobacterium carnis sp. nov., Chryseobacterium lactis sp. nov., Chryseobacterium nakagawai sp. nov. and Chryseobacterium taklimakanense comb. nov. Int J Syst Evol Microbiol 63: 4639–4662 [CrossRef] [PubMed].
    [Google Scholar]
  20. Hugo C. J., Segers P., Hoste B., Vancanneyt M., Kersters K.. ( 2003;). Chryseobacterium joostei sp. nov., isolated from the dairy environment. Int J Syst Evol Microbiol 53: 771–777 [CrossRef] [PubMed].
    [Google Scholar]
  21. Ilardi P., Fernández J., Avendaño-Herrera R.. ( 2009;). Chryseobacterium piscicola sp. nov., isolated from diseased salmonid fish. Int J Syst Evol Microbiol 59: 3001–3005 [CrossRef] [PubMed].
    [Google Scholar]
  22. Kämpfer P., Dreyer U., Neef A., Dott W., Busse H.-J.. ( 2003;). Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 53: 93–97 [CrossRef] [PubMed].
    [Google Scholar]
  23. Kämpfer P., Vaneechoutte M., Lodders N., De Baere T., Avesani V., Janssens M., Busse H.-J., Wauters G.. ( 2009;). Description of Chryseobacterium anthropi sp. nov. to accommodate clinical isolates biochemically similar to Kaistella koreensis and Chryseobacterium haifense, proposal to reclassify Kaistella koreensis as Chryseobacterium koreense comb. nov. and emended description of the genus Chryseobacterium. Int J Syst Evol Microbiol 59: 2421–2428 [CrossRef] [PubMed].
    [Google Scholar]
  24. Kämpfer P., Arun A. B., Young C. C., Chen W. M., Sridhar K. R., Rekha P. D.. ( 2010;). Chryseobacterium arthrosphaerae sp. nov., isolated from the faeces of the pill millipede Arthrosphaera magna Attems. Int J Syst Evol Microbiol 60: 1765–1769 [CrossRef] [PubMed].
    [Google Scholar]
  25. Kämpfer P., Poppel M. T., Wilharm G., Busse H.-J., McInroy J. A., Glaeser S. P.. ( 2014;). Chryseobacterium gallinarum sp. nov., isolated from a chicken, and Chryseobacterium contaminans sp. nov., isolated as a contaminant from a rhizosphere sample. Int J Syst Evol Microbiol 64: 1419–1427 [CrossRef] [PubMed].
    [Google Scholar]
  26. Kim K. K., Bae H. S., Schumann P., Lee S. T.. ( 2005;). Chryseobacterium daecheongense sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 55: 133–138 [CrossRef] [PubMed].
    [Google Scholar]
  27. Kim K. K., Lee K. C., Oh H. M., Lee J. S.. ( 2008;). Chryseobacterium aquaticum sp. nov., isolated from a water reservoir. Int J Syst Evol Microbiol 58: 533–537 [CrossRef] [PubMed].
    [Google Scholar]
  28. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  29. Kimura M.. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120 [CrossRef] [PubMed].
    [Google Scholar]
  30. Kirk K. E., Hoffman J. A., Smith K. A., Strahan B. L., Failor K. C., Krebs J. E., Gale A. N., Do T. D., Sontag T. C., other authors. ( 2013;). Chryseobacterium angstadtii sp. nov., isolated from a newt tank. Int J Syst Evol Microbiol 63: 4777–4783 [CrossRef] [PubMed].
    [Google Scholar]
  31. Kovacs N.. ( 1956;). Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178: 703 [CrossRef] [PubMed].
    [Google Scholar]
  32. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–147. Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;.
    [Google Scholar]
  33. Lin Y. C., Uemori K., de Briel D. A., Arunpairojana V., Yokota A.. ( 2004;). Zimmermannella helvola gen. nov., sp. nov., Zimmermannella alba sp. nov., Zimmermannella bifida sp. nov., Zimmermannella faecalis sp. nov. and Leucobacter albus sp. nov., novel members of the family Microbacteriaceae. Int J Syst Evol Microbiol 54: 1669–1676 [CrossRef] [PubMed].
    [Google Scholar]
  34. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  35. Moore D. D., Dowhan D.. ( 1995;). Preparation and analysis of DNA. . In Current Protocols in Molecular Biology, pp. 2–11. Edited by Ausubel F. W., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. New York: Wiley;.
    [Google Scholar]
  36. Park M. S., Jung S. R., Lee K. H., Lee M. S., Do J. O., Kim S. B., Bae K. S.. ( 2006;). Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. Int J Syst Evol Microbiol 56: 433–438 [CrossRef] [PubMed].
    [Google Scholar]
  37. Peng F., Liu M., Zhang L., Dai J., Luo X., An H., Fang C.. ( 2009;). Planobacterium taklimakanense gen. nov., sp. nov., a member of the family Flavobacteriaceae that exhibits swimming motility, isolated from desert soil. Int J Syst Evol Microbiol 59: 1672–1678 [CrossRef] [PubMed].
    [Google Scholar]
  38. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  39. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  40. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  41. Shen F. T., Kämpfer P., Young C. C., Lai W. A., Arun A. B.. ( 2005;). Chryseobacterium taichungense sp. nov., isolated from contaminated soil. Int J Syst Evol Microbiol 55: 1301–1304 [CrossRef] [PubMed].
    [Google Scholar]
  42. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Woods W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  43. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44: 846–849 [CrossRef].
    [Google Scholar]
  44. Staneck J. L., Roberts G. D.. ( 1974;). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28: 226–231 [PubMed].
    [Google Scholar]
  45. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  46. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  47. Tindall B. J.. ( 1990;). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66: 199–202 [CrossRef].
    [Google Scholar]
  48. Vandamme P., Bernardet J. F., Segers P., Kersters K., Holmes B.. ( 1994;). New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Bacteriol 44: 827–831 [CrossRef].
    [Google Scholar]
  49. Vaneechoutte M., Kämpfer P., De Baere T., Avesani V., Janssens M., Wauters G.. ( 2007;). Chryseobacterium hominis sp. nov., to accommodate clinical isolates biochemically similar to CDC groups II-h and II-c. Int J Syst Evol Microbiol 57: 2623–2628 [CrossRef] [PubMed].
    [Google Scholar]
  50. Weon H. Y., Kim B. Y., Yoo S. H., Kwon S. W., Stackebrandt E., Go S. J.. ( 2008;). Chryseobacterium soli sp. nov. and Chryseobacterium jejuense sp. nov., isolated from soil samples from Jeju, Korea. Int J Syst Evol Microbiol 58: 470–473 [CrossRef] [PubMed].
    [Google Scholar]
  51. Wu Y. F., Wu Q. L., Liu S. J.. ( 2013;). Chryseobacterium taihuense sp. nov., isolated from a eutrophic lake, and emended descriptions of the genus Chryseobacterium, Chryseobacterium taiwanense, Chryseobacterium jejuense and Chryseobacterium indoltheticum. Int J Syst Evol Microbiol 63: 913–919 [CrossRef] [PubMed].
    [Google Scholar]
  52. Xie C. H., Yokota A.. ( 2003;). Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 49: 345–349 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000761
Loading
/content/journal/ijsem/10.1099/ijsem.0.000761
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error