1887

Abstract

Two novel bacteria of the phylum were isolated during searches for amoeba-resistant micro-organisms in natural and constructed water systems. Strain HT99 was isolated from amoebae found in the biofilm of an outdoor hot tub in Cookeville, Tennessee, USA, and strain CC99 was isolated from amoebae in the biofilm of a cooling tower in the same city. Both bacteria were Gram-stain-negative cocci to coccobacilli, unculturable on conventional laboratory media, and were found to be intranuclear when maintained in . The genomes of both isolates were completely sequenced. The genome of CC99 was found to be 3.0 Mbp with a 37.9 mol% DNA G+C content, while the genome of HT99 was 3.6 Mbp with a 39.5 mol% DNA G+C content. The 16S rRNA gene sequences of the two isolates were 94 % similar to each other. Phylogenetic comparisons of the 16S rRNA, and genes, the DNA G+C content and the fatty acid composition demonstrated that both bacteria are members of the order , and are most closely related to . The phenotypic and genetic evidence supports the proposal of novel taxa to accommodate these strains; however, because strains HT99 and CC99 cannot be cultured outside of the amoeba host, the respective names ‘ Berkiella aquae’ and ‘ Berkiella cookevillensis’ are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000750
2016-02-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/2/536.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000750&mimeType=html&fmt=ahah

References

  1. Adeleke A., Pruckler J., Benson R., Rowbotham T., Halablab M., Fields B.. ( 1996;). Legionella-like amebal pathogens—phylogenetic status and possible role in respiratory disease. Emerg Infect Dis 2: 225–230 [CrossRef] [PubMed].
    [Google Scholar]
  2. Barker J., Brown M. R. W. ( 1994;). Trojan horses of the microbial world: protozoa and the survival of bacterial pathogens in the environment. Microbiology 140: 1253–1259 [CrossRef] [PubMed].
    [Google Scholar]
  3. Benkel D. H., McClure E. M., Woolard D., Rullan J. V., Miller G. B. Jr., Jenkins S. R., Hershey J. H., Benson R. F., Pruckler J. M., other authors. ( 2000;). Outbreak of Legionnaires’ disease associated with a display whirlpool spa. Int J Epidemiol 29: 1092–1098 [CrossRef] [PubMed].
    [Google Scholar]
  4. Berk S. G., Gunderson J. H., Newsome A. L., Farone A. L., Hayes B. J., Redding K. S., Uddin N., Williams E. L., Johnson R. A., other authors. ( 2006;). Occurrence of infected amoebae in cooling towers compared with natural aquatic environments: implications for emerging pathogens. Environ Sci Technol 40: 7440–7444 [CrossRef] [PubMed].
    [Google Scholar]
  5. Bunson M.. ( 1991;). A Dictionary of the Roman Empire Oxford, UK: Oxford University Press;.
    [Google Scholar]
  6. Byrne B., Swanson M. S.. ( 1998;). Expression of Legionella pneumophila virulence traits in response to growth conditions. Infect Immun 66: 3029–3034 [PubMed].
    [Google Scholar]
  7. Cirillo J. D., Falkow S., Tompkins L. S.. ( 1994;). Growth of Legionella pneumophila in Acanthamoeba castellanii enhances invasion. Infect Immun 62: 3254–3261 [PubMed].
    [Google Scholar]
  8. Diogo A., Veríssimo A., Nobre M. F., da Costa M. S.. ( 1999;). Usefulness of fatty acid composition for differentiation of Legionella species. J Clin Microbiol 37: 2248–2254 [PubMed].
    [Google Scholar]
  9. Evstigneeva A., Raoult D., Karpachevskiy L., La Scola B.. ( 2009;). Amoeba co-culture of soil specimens recovered 33 different bacteria, including four new species and Streptococcus pneumoniae. Microbiology 155: 657–664 [CrossRef] [PubMed].
    [Google Scholar]
  10. Greub G., Raoult D.. ( 2004;). Microorganisms resistant to free-living amoebae. Clin Microbiol Rev 17: 413–433 [CrossRef] [PubMed].
    [Google Scholar]
  11. Horn M., Wagner M.. ( 2004;). Bacterial endosymbionts of free-living amoebae. J Eukaryot Microbiol 51: 509–514 [CrossRef] [PubMed].
    [Google Scholar]
  12. Lamoth F., Greub G.. ( 2010;). Amoebal pathogens as emerging causal agents of pneumonia. FEMS Microbiol Rev 34: 260–280 [CrossRef] [PubMed].
    [Google Scholar]
  13. Moliner C., Fournier P.-E., Raoult D.. ( 2010;). Genome analysis of microorganisms living in amoebae reveals a melting pot of evolution. FEMS Microbiol Rev 34: 281–294 [CrossRef] [PubMed].
    [Google Scholar]
  14. Molmeret M., Horn M., Wagner M., Santic M., Abu Kwaik Y.. ( 2005;). Amoebae as training grounds for intracellular bacterial pathogens. Appl Environ Microbiol 71: 20–28 [CrossRef] [PubMed].
    [Google Scholar]
  15. Newsome A. L., Scott T. M., Benson R. F., Fields B. S.. ( 1998;). Isolation of an amoeba naturally harboring a distinctive Legionella species. Appl Environ Microbiol 64: 1688–1693 [PubMed].
    [Google Scholar]
  16. Omsland A., Beare P. A., Hill J., Cockrell D. C., Howe D., Hansen B., Samuel J. E., Heinzen R. A.. ( 2011;). Isolation from animal tissue and genetic transformation of Coxiella burnetii are facilitated by an improved axenic growth medium. Appl Environ Microbiol 77: 3720–3725 [CrossRef] [PubMed].
    [Google Scholar]
  17. Pagnier I., Croce O., Robert C., Raoult D., La Scola B.. ( 2014;). Genome sequence of Legionella anisa, isolated from a respiratory sample, using an amoebal coculture procedure. Genome Announc 2: e00031–e00014 [PubMed].
    [Google Scholar]
  18. Pruckler J. M., Benson R. F., Moyenuddin M., Martin W. T., Fields B. S.. ( 1995;). Association of flagellum expression and intracellular growth of Legionella pneumophila. Infect Immun 63: 4928–4932 [PubMed].
    [Google Scholar]
  19. Rodríguez-Zaragoza S.. ( 1994;). Ecology of free-living amoebae. Crit Rev Microbiol 20: 225–241 [CrossRef] [PubMed].
    [Google Scholar]
  20. Ronquist F., Huelsenbeck J. P.. ( 2003;). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574 [CrossRef] [PubMed].
    [Google Scholar]
  21. Santos P., Pinhal I., Rainey F. A., Empadinhas N., Costa J., Fields B., Benson R., Veríssimo A., Da Costa M. S.. ( 2003;). Gamma-proteobacteria Aquicella lusitana gen. nov., sp. nov., and Aquicella siphonis sp. nov. infect protozoa and require activated charcoal for growth in laboratory media. Appl Environ Microbiol 69: 6533–6540 [CrossRef] [PubMed].
    [Google Scholar]
  22. Sarton G.. ( 1954;). Book review of Médecine et Médicins au Pays de Liège by Marcel Florkin. J Hist Med Allied Sci IX: 471–475 [CrossRef].
    [Google Scholar]
  23. Shannon J. G., Heinzen R. A.. ( 2008;). Infection of human monocyte-derived macrophages with Coxiella burnetii. Methods Mol Biol 431: 189–200 [PubMed].
    [Google Scholar]
  24. Stackebrandt E., Goebel B. M.. ( 1994;). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44: 846–849 [CrossRef].
    [Google Scholar]
  25. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). MEGA5: molecular evolution genetics analysis using maxiumum likelihood, evolutionary distance, and maximum parsiomony methods. Mol Biol Evol 28: 2731–2739 [CrossRef].
    [Google Scholar]
  26. Tzianabos T., Moss C. W., McDade J. E.. ( 1981;). Fatty acid composition of rickettsiae. J Clin Microbiol 13: 603–605 [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000750
Loading
/content/journal/ijsem/10.1099/ijsem.0.000750
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error