1887

Abstract

A novel obligately halophilic, facultatively alkaliphilic actinobacterium, designated EGI 80759, was isolated from the rhizosphere of Willd, Karamay, Xinjiang province, north-west China. Cells of strain EGI 80759 were Gram-stain-positive, non-motile and non-endospore-forming rods. Strain EGI 80759 showed obligately halophilic growth with a tolerance to 8–25 % (w/v) NaCl (optimum growth at 10–12 %, w/v) and facultatively alkaliphilic growth within the pH range 7.0–11.0 (optimum growth at pH 9.0–10.0). Cell-wall hydrolysates of the isolate contained -diaminopimelic acid (peptidoglycan type A1γ), with glucose, glucosamine, ribose and mannose as the major sugars. The major fatty acids identified were 10-methyl-C, Cω8 and C. The predominant menaquinone was MK-9(H). The G+C content of the genomic DNA was 72.1 mol%. Phylogenetic analysis, based on 16S rRNA gene sequences, revealed that strain EGI 80759 clustered with members of the class and showed highest 16S rRNA gene sequence similarities with F10 (90.3 %) and ANL-iso2 (88.1 %). On the basis of the data obtained from phenotypic and chemotaxonomic studies and the phylogenetic analysis, the isolate is proposed to be a representative of a novel genus and a novel species, gen. nov., sp. nov., of a proposed novel family, fam. nov., and order, ord. nov., within the class . The type strain of the type species, , is EGI 80759 ( = CGMCC 1.14997 = KCTC 39588).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000713
2016-01-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/1/283.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000713&mimeType=html&fmt=ahah

References

  1. Bull A. T.. ( 2011;). Actinobacteria of the extremobiosphere. . In Extremophiles Handbook, pp. 1203–1240 [CrossRef] Edited by Horikoshi K.. Japan: Springer;.
    [Google Scholar]
  2. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100: 221–230 [CrossRef] [PubMed].
    [Google Scholar]
  3. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  4. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–789 [CrossRef].
    [Google Scholar]
  5. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  6. Goodfellow M.. ( 1971;). Numerical taxonomy of some nocardioform bacteria. J Gen Microbiol 69: 33–80 [CrossRef] [PubMed].
    [Google Scholar]
  7. Goodfellow M., Fiedler H. P.. ( 2010;). A guide to successful bioprospecting: informed by actinobacterial systematics. Antonie van Leeuwenhoek 98: 119–142 [CrossRef] [PubMed].
    [Google Scholar]
  8. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A.. ( 1996;). Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46: 234–239 [CrossRef] [PubMed].
    [Google Scholar]
  9. Gram H.C.. ( 1884;). Über die isolierte Färbung der Schizomyceten in Schnitt- und Trockenpräparaten. Fortschritte der Medizin 2: 185–189.
    [Google Scholar]
  10. Hugenholtz P., Stackebrandt E.. ( 2004;). Reclassification of Sphaerobacter thermophilus from the subclass Sphaerobacteridae in the phylum Actinobacteria to the class Thermomicrobia (emended description) in the phylum Chloroflexi (emended description). Int J Syst Evol Microbiol 54: 2049–2051 [CrossRef] [PubMed].
    [Google Scholar]
  11. Kelly K. L.. ( 1964;). Color-name charts illustrated with centroid colors. Inter-Society Color Council-National Bureau of Standards Chicago: Published in US;.
    [Google Scholar]
  12. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  13. Kurahashi M., Fukunaga Y., Sakiyama Y., Harayama S., Yokota A.. ( 2010;). Euzebya tangerina gen. nov., sp. nov., a deeply branching marine actinobacterium isolated from the sea cucumber Holothuria edulis, and proposal of Euzebyaceae fam. nov., Euzebyales ord. nov. and Nitriliruptoridae subclassis nov. Int J Syst Evol Microbiol 60: 2314–2319 [CrossRef] [PubMed].
    [Google Scholar]
  14. Li W. J., Xu P., Schumann P., Zhang Y. Q., Pukall R., Xu L. H., Stackebrandt E., Jiang C. L.. ( 2007;). Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol 57: 1424–1428 [CrossRef] [PubMed].
    [Google Scholar]
  15. Ludwig W., Euzéby J., Schumann P., Busse H.-J., Trujillo M. E., Kämpfer P., Whitman W. B.. ( 2012;). Road map of the phylum Actinobacteria. . In Bergey's Manual of Systematic Bacteriology Volume 5: The Actinobacteria, pp. 1–28, 2nd edn. New York: Springer; [CrossRef].
    [Google Scholar]
  16. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3: 208–218 [CrossRef].
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  18. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal K., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinines and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  19. Pham V. H., Kim J.. ( 2012;). Cultivation of unculturable soil bacteria. Trends Biotechnol 30: 475–484 [CrossRef] [PubMed].
    [Google Scholar]
  20. Reasoner D. J., Geldreich E. E.. ( 1985;). A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49: 1–7 [PubMed].
    [Google Scholar]
  21. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  22. Sasser M.. ( 1990;). Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  23. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36: 407–477 [PubMed].
    [Google Scholar]
  24. Shirling E. B., Gottlieb D.. ( 1966;). Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16: 313–340 [CrossRef].
    [Google Scholar]
  25. Sorokin D. Y., van Pelt S., Tourova T. P., Evtushenko L. I.. ( 2009;). Nitriliruptor alkaliphilus gen. nov., sp. nov., a deep-lineage haloalkaliphilic actinobacterium from soda lakes capable of growth on aliphatic nitriles, and proposal of Nitriliruptoraceae fam. nov. and Nitriliruptorales ord. nov. Int J Syst Evol Microbiol 59: 248–253 [CrossRef] [PubMed].
    [Google Scholar]
  26. Stackebrandt E., Rainey F. A., Ward-Rainey N. L.. ( 1997;). Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47: 479–491 [CrossRef].
    [Google Scholar]
  27. Staneck J. L., Roberts G. D.. ( 1974;). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28: 226–231 [PubMed].
    [Google Scholar]
  28. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  29. Tang S. K., Tian X. P., Zhi X. Y., Cai M., Wu J. Y., Yang L. L., Xu L. H., Li W. J.. ( 2008;). Haloactinospora alba gen. nov., sp. nov., a halophilic filamentous actinomycete of the family Nocardiopsaceae. Int J Syst Evol Microbiol 58: 2075–2080 [CrossRef] [PubMed].
    [Google Scholar]
  30. Tang S. K., Wang Y., Chen Y., Lou K., Cao L. L., Xu L. H., Li W. J.. ( 2009;). Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. Int J Syst Evol Microbiol 59: 2025–2032 [CrossRef] [PubMed].
    [Google Scholar]
  31. Williams S. T., Goodfellow M., Alderson G., Wellington E. M., Sneath P. H., Sackin M. J.. ( 1983;). Numerical classification of Streptomyces and related genera. J Gen Microbiol 129: 1743–1813 [PubMed].
    [Google Scholar]
  32. Xu P., Li W. J., Tang S. K., Zhang Y. Q., Chen G. Z., Chen H. H., Xu L. H., Jiang C. L.. ( 2005;). Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 55: 1149–1153 [CrossRef] [PubMed].
    [Google Scholar]
  33. Zhi X. Y., Li W. J., Stackebrandt E.. ( 2009;). An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59: 589–608 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000713
Loading
/content/journal/ijsem/10.1099/ijsem.0.000713
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error