1887

Abstract

A novel obligately halophilic, facultatively alkaliphilic actinobacterium, designated EGI 80759, was isolated from the rhizosphere of Willd, Karamay, Xinjiang province, north-west China. Cells of strain EGI 80759 were Gram-stain-positive, non-motile and non-endospore-forming rods. Strain EGI 80759 showed obligately halophilic growth with a tolerance to 8–25 % (w/v) NaCl (optimum growth at 10–12 %, w/v) and facultatively alkaliphilic growth within the pH range 7.0–11.0 (optimum growth at pH 9.0–10.0). Cell-wall hydrolysates of the isolate contained -diaminopimelic acid (peptidoglycan type A1γ), with glucose, glucosamine, ribose and mannose as the major sugars. The major fatty acids identified were 10-methyl-C, Cω8 and C. The predominant menaquinone was MK-9(H). The G+C content of the genomic DNA was 72.1 mol%. Phylogenetic analysis, based on 16S rRNA gene sequences, revealed that strain EGI 80759 clustered with members of the class and showed highest 16S rRNA gene sequence similarities with F10 (90.3 %) and ANL-iso2 (88.1 %). On the basis of the data obtained from phenotypic and chemotaxonomic studies and the phylogenetic analysis, the isolate is proposed to be a representative of a novel genus and a novel species, gen. nov., sp. nov., of a proposed novel family, fam. nov., and order, ord. nov., within the class . The type strain of the type species, , is EGI 80759 ( = CGMCC 1.14997 = KCTC 39588).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000713
2016-01-01
2020-09-26
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/1/283.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000713&mimeType=html&fmt=ahah

References

  1. Bull A. T.. 2011; Actinobacteria of the extremobiosphere. In Extremophiles Handbook pp1203–1240 [CrossRef]Edited by Horikoshi K.. Japan: Springer;
    [Google Scholar]
  2. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E.. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol100:221–230 [CrossRef][PubMed]
    [Google Scholar]
  3. Felsenstein J.. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  4. Felsenstein J.. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution39:783–789 [CrossRef]
    [Google Scholar]
  5. Fitch W. M.. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool20:406–416 [CrossRef]
    [Google Scholar]
  6. Goodfellow M.. 1971; Numerical taxonomy of some nocardioform bacteria. J Gen Microbiol69:33–80 [CrossRef][PubMed]
    [Google Scholar]
  7. Goodfellow M., Fiedler H. P.. 2010; A guide to successful bioprospecting: informed by actinobacterial systematics. Antonie van Leeuwenhoek98:119–142 [CrossRef][PubMed]
    [Google Scholar]
  8. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A.. 1996; Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol46:234–239 [CrossRef][PubMed]
    [Google Scholar]
  9. Gram H.C. 1884; Über die isolierte Färbung der Schizomyceten in Schnitt- und Trockenpräparaten. Fortschritte der Medizin2:185–189
    [Google Scholar]
  10. Hugenholtz P., Stackebrandt E.. 2004; Reclassification of Sphaerobacter thermophilus from the subclass Sphaerobacteridae in the phylum Actinobacteria to the class Thermomicrobia (emended description) in the phylum Chloroflexi (emended description). Int J Syst Evol Microbiol54:2049–2051 [CrossRef][PubMed]
    [Google Scholar]
  11. Kelly K. L.. 1964; Color-name charts illustrated with centroid colors. Inter-Society Color Council-National Bureau of Standards Chicago: Published in US;
    [Google Scholar]
  12. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. 2012; Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol62:716–721 [CrossRef][PubMed]
    [Google Scholar]
  13. Kurahashi M., Fukunaga Y., Sakiyama Y., Harayama S., Yokota A.. 2010; Euzebya tangerina gen. nov., sp. nov., a deeply branching marine actinobacterium isolated from the sea cucumber Holothuria edulis, and proposal of Euzebyaceae fam. nov., Euzebyales ord. nov. and Nitriliruptoridae subclassis nov. Int J Syst Evol Microbiol60:2314–2319 [CrossRef][PubMed]
    [Google Scholar]
  14. Li W. J., Xu P., Schumann P., Zhang Y. Q., Pukall R., Xu L. H., Stackebrandt E., Jiang C. L.. 2007; Georgenia ruanii sp. nov., a novel actinobacterium isolated from forest soil in Yunnan (China), and emended description of the genus Georgenia. Int J Syst Evol Microbiol57:1424–1428 [CrossRef][PubMed]
    [Google Scholar]
  15. Ludwig W., Euzéby J., Schumann P., Busse H.-J., Trujillo M. E., Kämpfer P., Whitman W. B.. 2012; Road map of the phylum Actinobacteria. In Bergey's Manual of Systematic Bacteriology Volume 5: The Actinobacteria pp1–28, 2nd edn. New York: Springer; [CrossRef]
    [Google Scholar]
  16. Marmur J.. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol3:208–218 [CrossRef]
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W. B.. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol39:159–167 [CrossRef]
    [Google Scholar]
  18. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal K., Parlett J. H.. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinines and polar lipids. J Microbiol Methods2:233–241 [CrossRef]
    [Google Scholar]
  19. Pham V. H., Kim J.. 2012; Cultivation of unculturable soil bacteria. Trends Biotechnol30:475–484 [CrossRef][PubMed]
    [Google Scholar]
  20. Reasoner D. J., Geldreich E. E.. 1985; A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol49:1–7[PubMed]
    [Google Scholar]
  21. Saitou N., Nei M.. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol4:406–425[PubMed]
    [Google Scholar]
  22. Sasser M.. 1990; Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids MIDI Technical Note 101 Newark, DE: MIDI Inc;
    [Google Scholar]
  23. Schleifer K. H., Kandler O.. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev36:407–477[PubMed]
    [Google Scholar]
  24. Shirling E. B., Gottlieb D.. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol16:313–340 [CrossRef]
    [Google Scholar]
  25. Sorokin D. Y., van Pelt S., Tourova T. P., Evtushenko L. I.. 2009; Nitriliruptor alkaliphilus gen. nov., sp. nov., a deep-lineage haloalkaliphilic actinobacterium from soda lakes capable of growth on aliphatic nitriles, and proposal of Nitriliruptoraceae fam. nov. and Nitriliruptorales ord. nov. Int J Syst Evol Microbiol59:248–253 [CrossRef][PubMed]
    [Google Scholar]
  26. Stackebrandt E., Rainey F. A., Ward-Rainey N. L.. 1997; Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol47:479–491 [CrossRef]
    [Google Scholar]
  27. Staneck J. L., Roberts G. D.. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol28:226–231[PubMed]
    [Google Scholar]
  28. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. 2013; mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol30:2725–2729 [CrossRef][PubMed]
    [Google Scholar]
  29. Tang S. K., Tian X. P., Zhi X. Y., Cai M., Wu J. Y., Yang L. L., Xu L. H., Li W. J.. 2008; Haloactinospora alba gen. nov., sp. nov., a halophilic filamentous actinomycete of the family Nocardiopsaceae. Int J Syst Evol Microbiol58:2075–2080 [CrossRef][PubMed]
    [Google Scholar]
  30. Tang S. K., Wang Y., Chen Y., Lou K., Cao L. L., Xu L. H., Li W. J.. 2009; Zhihengliuella alba sp. nov., and emended description of the genus Zhihengliuella. Int J Syst Evol Microbiol59:2025–2032 [CrossRef][PubMed]
    [Google Scholar]
  31. Williams S. T., Goodfellow M., Alderson G., Wellington E. M., Sneath P. H., Sackin M. J.. 1983; Numerical classification of Streptomyces and related genera. J Gen Microbiol129:1743–1813[PubMed]
    [Google Scholar]
  32. Xu P., Li W. J., Tang S. K., Zhang Y. Q., Chen G. Z., Chen H. H., Xu L. H., Jiang C. L.. 2005; Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol55:1149–1153 [CrossRef][PubMed]
    [Google Scholar]
  33. Zhi X. Y., Li W. J., Stackebrandt E.. 2009; An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol59:589–608 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000713
Loading
/content/journal/ijsem/10.1099/ijsem.0.000713
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error