1887

Abstract

A novel sulfur-oxidizing bacterium, designated strain BiS0, was isolated from a sediment sample collected from a freshwater lake in Japan. The cells were rod-shaped, 1.4–4.6 × 0.4–0.7 μm and Gram-stain-negative. The G+C content of the genomic DNA was around 44 mol%. The isolate possessed summed feature 3 (Cω7 and/or Cω6), C and C 3-OH as major cellular fatty acids. Strain BiS0 grew by carbon dioxide fixation and oxidation of inorganic sulfur compounds with oxygen as the electron acceptor. Growth was observed over a temperature range of 0–32 °C (optimum, 15–22 °C), an NaCl concentration range of 0–546.4 mM (optimum 0–66.7 mM) and a pH range of 5.2–8.1 (optimum 6.1–6.3). Phylogenetic analysis, based on 16S rRNA gene sequences, indicated that strain BiS0 belongs to the family in the class . The closest cultured relatives were skB26 and sp. T08, with 16S rRNA gene sequence similarities of 96.3 %. On the basis of the data obtained in this study, strain BiS0 represents a novel species of a novel genus, for which the name gen. nov., sp. nov. is proposed. The type strain is BiS0 ( = NBRC 110941 = DSM 100309).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000679
2016-01-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/1/113.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000679&mimeType=html&fmt=ahah

References

  1. Boyd E. S., Hamilton T. L., Havig J. R., Skidmore M. L., Shock E. L.. ( 2014;). Chemolithotrophic primary production in a subglacial ecosystem. Appl Environ Microbiol 80: 6146–6153 [CrossRef] [PubMed].
    [Google Scholar]
  2. Cheng W., Zhang J., Wang Z., Wang M., Xie S.. ( 2014;). Bacterial communities in sediments of a drinking water reservoir. Ann Microbiol 64: 875–878 [CrossRef].
    [Google Scholar]
  3. Drobner E., Huber H., Rachel R., Stetter K. O.. ( 1992;). Thiobacillus plumbophilus spec. nov., a novel galena and hydrogen oxidizer. Arch Microbiol 157: 213–217 [CrossRef] [PubMed].
    [Google Scholar]
  4. Field E. K., D'Imperio S., Miller A. R., VanEngelen M. R., Gerlach R., Lee B. D., Apel W. A., Peyton B. M.. ( 2010;). Application of molecular techniques to elucidate the influence of cellulosic waste on the bacterial community structure at a simulated low-level-radioactive-waste site. Appl Environ Microbiol 76: 3106–3115 [CrossRef] [PubMed].
    [Google Scholar]
  5. Herrmann M., Rusznyák A., Akob D. M., Schulze I., Opitz S., Totsche K. U., Küsel K.. ( 2015;). Large fractions of CO2-fixing microorganisms in pristine limestone aquifers appear to be involved in the oxidation of reduced sulfur and nitrogen compounds. Appl Environ Microbiol 81: 2384–2394 [CrossRef] [PubMed].
    [Google Scholar]
  6. Hong P. Y., Yannarell A. C., Dai Q., Ekizoglu M., Mackie R. I.. ( 2013;). Monitoring the perturbation of soil and groundwater microbial communities due to pig production activities. Appl Environ Microbiol 79: 2620–2629 [CrossRef] [PubMed].
    [Google Scholar]
  7. Katayama-Fujimura Y., Komatsu Y., Kuraishi H., Kaneko T.. ( 1984;). Estimation of DNA base composition by high performance liquid chromatography of its nuclease PI hydrolysate. Agric Biol Chem 48: 3169–3172 [CrossRef].
    [Google Scholar]
  8. Kojima H., Fukui M.. ( 2010;). Sulfuricella denitrificans gen. nov., sp. nov., a sulfur-oxidizing autotroph isolated from a freshwater lake. Int J Syst Evol Microbiol 60: 2862–2866 [CrossRef] [PubMed].
    [Google Scholar]
  9. Kubo K., Kojima H., Fukui M.. ( 2014;). Vertical distribution of major sulfate-reducing bacteria in a shallow eutrophic meromictic lake. Syst Appl Microbiol 37: 510–519 [CrossRef] [PubMed].
    [Google Scholar]
  10. Lane D. J.. ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;.
    [Google Scholar]
  11. Li D., Li Z., Yu J., Cao N., Liu R., Yang M.. ( 2010;). Characterization of bacterial community structure in a drinking water distribution system during an occurrence of red water. Appl Environ Microbiol 76: 7171–7180 [CrossRef] [PubMed].
    [Google Scholar]
  12. Li J., Sun W., Wang S., Sun Z., Lin S., Peng X.. ( 2014;). Bacteria diversity, distribution and insight into their role in S and Fe biogeochemical cycling during black shale weathering. Environ Microbiol 16: 3533–3547 [CrossRef] [PubMed].
    [Google Scholar]
  13. Liu Y., Zhang J., Zhao L., Zhang X., Xie S.. ( 2014;). Spatial distribution of bacterial communities in high-altitude freshwater wetland sediment. Limnology 15: 249–256 [CrossRef].
    [Google Scholar]
  14. Luo J. F., Lin W. T., Guo Y.. ( 2011;). Functional genes based analysis of sulfur-oxidizing bacteria community in sulfide removing bioreactor. Appl Microbiol Biotechnol 90: 769–778 [CrossRef] [PubMed].
    [Google Scholar]
  15. Meyer B., Kuever J.. ( 2007;). Molecular analysis of the diversity of sulfate-reducing and sulfur-oxidizing prokaryotes in the environment, using aprA as functional marker gene. Appl Environ Microbiol 73: 7664–7679 [CrossRef] [PubMed].
    [Google Scholar]
  16. Nelson D. M., Ohene-Adjei S., Hu F. S., Cann I. K. O., Mackie R. I.. ( 2007;). Bacterial diversity and distribution in the holocene sediments of a northern temperate lake. Microb Ecol 54: 252–263 [CrossRef] [PubMed].
    [Google Scholar]
  17. Nemoto F., Kojima H., Fukui M.. ( 2011;). Diversity of freshwater Thioploca species and their specific association with filamentous bacteria of the phylum Chloroflexi. Microb Ecol 62: 753–764 [CrossRef] [PubMed].
    [Google Scholar]
  18. Song H., Li Z., Du B., Wang G., Ding Y.. ( 2012;). Bacterial communities in sediments of the shallow Lake Dongping in China. J Appl Microbiol 112: 79–89 [CrossRef] [PubMed].
    [Google Scholar]
  19. Sun H., Shi B., Bai Y., Wang D.. ( 2014a;). Bacterial community of biofilms developed under different water supply conditions in a distribution system. Sci Total Environ 472: 99–107 [CrossRef] [PubMed].
    [Google Scholar]
  20. Sun H., Shi B., Lytle D. A., Bai Y., Wang D.. ( 2014b;). Formation and release behavior of iron corrosion products under the influence of bacterial communities in a simulated water distribution system. Environ Sci Process Impacts 16: 576–585 [CrossRef] [PubMed].
    [Google Scholar]
  21. Wang S., Liang P., Wu Z., Su F., Yuan L., Sun Y., Wu Q., Huang X.. ( 2015;). Mixed sulfur-iron particles packed reactor for simultaneous advanced removal of nitrogen and phosphorus from secondary effluent. Environ Sci Pollut Res Int 22: 415–424 [CrossRef] [PubMed].
    [Google Scholar]
  22. Watanabe T., Kojima H., Fukui M.. ( 2012;). Draft genome sequence of a psychrotolerant sulfur-oxidizing bacterium, Sulfuricella denitrificans skB26, and proteomic insights into cold adaptation. Appl Environ Microbiol 78: 6545–6549 [CrossRef] [PubMed].
    [Google Scholar]
  23. Watanabe T., Kojima H., Takano Y., Fukui M.. ( 2013;). Diversity of sulfur-cycle prokaryotes in freshwater lake sediments investigated using aprA as the functional marker gene. Syst Appl Microbiol 36: 436–443 [CrossRef] [PubMed].
    [Google Scholar]
  24. Watanabe T., Kojima H., Fukui M.. ( 2014;). Complete genomes of freshwater sulfur oxidizers Sulfuricella denitrificans skB26 and Sulfuritalea hydrogenivorans sk43H: genetic insights into the sulfur oxidation pathway of betaproteobacteria. Syst Appl Microbiol 37: 387–395 [CrossRef] [PubMed].
    [Google Scholar]
  25. Watanabe T., Kojima H., Fukui M.. ( 2015a;). Sulfuriferula multivorans gen. nov., sp. nov., isolated from a freshwater lake, reclassification of ‘Thiobacillus plumbophilus’ as Sulfuriferula plumbophilus sp. nov., and description of Sulfuricellaceae fam. nov. and Sulfuricellales ord. nov. Int J Syst Evol Microbiol 65: 1504–1508 [CrossRef] [PubMed].
    [Google Scholar]
  26. Watanabe T., Kojima H., Fukui M.. ( 2015b;). Draft genome sequence of a sulfur-oxidizing autotroph. Sulfuricella sp. strain T08, isolated from a freshwater lake. Genome Announc 3: e00498–e00415 [CrossRef] [PubMed].
    [Google Scholar]
  27. Widdel F., Bak F.. ( 1992;). Gram-negative mesotrophic sulfate- reducing bacteria. . In The Prokaryotes, 4, , 2nd edn.., pp. 3352–3378 [CrossRef] Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H.. New York: Springer-Verlag;.
    [Google Scholar]
  28. Zhong F., Wu J., Dai Y., Yang L., Zhang Z., Cheng S., Zhang Q.. ( 2015;). Bacterial community analysis by PCR-DGGE and 454-pyrosequencing of horizontal subsurface flow constructed wetlands with front aeration. Appl Microbiol Biotechnol 99: 1499–1512 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000679
Loading
/content/journal/ijsem/10.1099/ijsem.0.000679
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error