1887

Abstract

A novel sulfur-oxidizing bacterium, designated strain BiS0, was isolated from a sediment sample collected from a freshwater lake in Japan. The cells were rod-shaped, 1.4–4.6 × 0.4–0.7 μm and Gram-stain-negative. The G+C content of the genomic DNA was around 44 mol%. The isolate possessed summed feature 3 (Cω7 and/or Cω6), C and C 3-OH as major cellular fatty acids. Strain BiS0 grew by carbon dioxide fixation and oxidation of inorganic sulfur compounds with oxygen as the electron acceptor. Growth was observed over a temperature range of 0–32 °C (optimum, 15–22 °C), an NaCl concentration range of 0–546.4 mM (optimum 0–66.7 mM) and a pH range of 5.2–8.1 (optimum 6.1–6.3). Phylogenetic analysis, based on 16S rRNA gene sequences, indicated that strain BiS0 belongs to the family in the class . The closest cultured relatives were skB26 and sp. T08, with 16S rRNA gene sequence similarities of 96.3 %. On the basis of the data obtained in this study, strain BiS0 represents a novel species of a novel genus, for which the name gen. nov., sp. nov. is proposed. The type strain is BiS0 ( = NBRC 110941 = DSM 100309).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000679
2016-01-01
2020-04-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/66/1/113.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000679&mimeType=html&fmt=ahah

References

  1. Boyd E. S., Hamilton T. L., Havig J. R., Skidmore M. L., Shock E. L.. 2014; Chemolithotrophic primary production in a subglacial ecosystem. Appl Environ Microbiol80:6146–6153 [CrossRef][PubMed]
    [Google Scholar]
  2. Cheng W., Zhang J., Wang Z., Wang M., Xie S.. 2014; Bacterial communities in sediments of a drinking water reservoir. Ann Microbiol64:875–878 [CrossRef]
    [Google Scholar]
  3. Drobner E., Huber H., Rachel R., Stetter K. O.. 1992; Thiobacillus plumbophilus spec. nov., a novel galena and hydrogen oxidizer. Arch Microbiol157:213–217 [CrossRef][PubMed]
    [Google Scholar]
  4. Field E. K., D'Imperio S., Miller A. R., VanEngelen M. R., Gerlach R., Lee B. D., Apel W. A., Peyton B. M.. 2010; Application of molecular techniques to elucidate the influence of cellulosic waste on the bacterial community structure at a simulated low-level-radioactive-waste site. Appl Environ Microbiol76:3106–3115 [CrossRef][PubMed]
    [Google Scholar]
  5. Herrmann M., Rusznyák A., Akob D. M., Schulze I., Opitz S., Totsche K. U., Küsel K.. 2015; Large fractions of CO2-fixing microorganisms in pristine limestone aquifers appear to be involved in the oxidation of reduced sulfur and nitrogen compounds. Appl Environ Microbiol81:2384–2394 [CrossRef][PubMed]
    [Google Scholar]
  6. Hong P. Y., Yannarell A. C., Dai Q., Ekizoglu M., Mackie R. I.. 2013; Monitoring the perturbation of soil and groundwater microbial communities due to pig production activities. Appl Environ Microbiol79:2620–2629 [CrossRef][PubMed]
    [Google Scholar]
  7. Katayama-Fujimura Y., Komatsu Y., Kuraishi H., Kaneko T.. 1984; Estimation of DNA base composition by high performance liquid chromatography of its nuclease PI hydrolysate. Agric Biol Chem48:3169–3172 [CrossRef]
    [Google Scholar]
  8. Kojima H., Fukui M.. 2010; Sulfuricella denitrificans gen. nov., sp. nov., a sulfur-oxidizing autotroph isolated from a freshwater lake. Int J Syst Evol Microbiol60:2862–2866 [CrossRef][PubMed]
    [Google Scholar]
  9. Kubo K., Kojima H., Fukui M.. 2014; Vertical distribution of major sulfate-reducing bacteria in a shallow eutrophic meromictic lake. Syst Appl Microbiol37:510–519 [CrossRef][PubMed]
    [Google Scholar]
  10. Lane D. J.. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp115–175Edited by Stackebrandt E., Goodfellow M.. Chichester: Wiley;
    [Google Scholar]
  11. Li D., Li Z., Yu J., Cao N., Liu R., Yang M.. 2010; Characterization of bacterial community structure in a drinking water distribution system during an occurrence of red water. Appl Environ Microbiol76:7171–7180 [CrossRef][PubMed]
    [Google Scholar]
  12. Li J., Sun W., Wang S., Sun Z., Lin S., Peng X.. 2014; Bacteria diversity, distribution and insight into their role in S and Fe biogeochemical cycling during black shale weathering. Environ Microbiol16:3533–3547 [CrossRef][PubMed]
    [Google Scholar]
  13. Liu Y., Zhang J., Zhao L., Zhang X., Xie S.. 2014; Spatial distribution of bacterial communities in high-altitude freshwater wetland sediment. Limnology15:249–256 [CrossRef]
    [Google Scholar]
  14. Luo J. F., Lin W. T., Guo Y.. 2011; Functional genes based analysis of sulfur-oxidizing bacteria community in sulfide removing bioreactor. Appl Microbiol Biotechnol90:769–778 [CrossRef][PubMed]
    [Google Scholar]
  15. Meyer B., Kuever J.. 2007; Molecular analysis of the diversity of sulfate-reducing and sulfur-oxidizing prokaryotes in the environment, using aprA as functional marker gene. Appl Environ Microbiol73:7664–7679 [CrossRef][PubMed]
    [Google Scholar]
  16. Nelson D. M., Ohene-Adjei S., Hu F. S., Cann I. K. O., Mackie R. I.. 2007; Bacterial diversity and distribution in the holocene sediments of a northern temperate lake. Microb Ecol54:252–263 [CrossRef][PubMed]
    [Google Scholar]
  17. Nemoto F., Kojima H., Fukui M.. 2011; Diversity of freshwater Thioploca species and their specific association with filamentous bacteria of the phylum Chloroflexi. Microb Ecol62:753–764 [CrossRef][PubMed]
    [Google Scholar]
  18. Song H., Li Z., Du B., Wang G., Ding Y.. 2012; Bacterial communities in sediments of the shallow Lake Dongping in China. J Appl Microbiol112:79–89 [CrossRef][PubMed]
    [Google Scholar]
  19. Sun H., Shi B., Bai Y., Wang D.. 2014a; Bacterial community of biofilms developed under different water supply conditions in a distribution system. Sci Total Environ472:99–107 [CrossRef][PubMed]
    [Google Scholar]
  20. Sun H., Shi B., Lytle D. A., Bai Y., Wang D.. 2014b; Formation and release behavior of iron corrosion products under the influence of bacterial communities in a simulated water distribution system. Environ Sci Process Impacts16:576–585 [CrossRef][PubMed]
    [Google Scholar]
  21. Wang S., Liang P., Wu Z., Su F., Yuan L., Sun Y., Wu Q., Huang X.. 2015; Mixed sulfur-iron particles packed reactor for simultaneous advanced removal of nitrogen and phosphorus from secondary effluent. Environ Sci Pollut Res Int22:415–424 [CrossRef][PubMed]
    [Google Scholar]
  22. Watanabe T., Kojima H., Fukui M.. 2012; Draft genome sequence of a psychrotolerant sulfur-oxidizing bacterium, Sulfuricella denitrificans skB26, and proteomic insights into cold adaptation. Appl Environ Microbiol78:6545–6549 [CrossRef][PubMed]
    [Google Scholar]
  23. Watanabe T., Kojima H., Takano Y., Fukui M.. 2013; Diversity of sulfur-cycle prokaryotes in freshwater lake sediments investigated using aprA as the functional marker gene. Syst Appl Microbiol36:436–443 [CrossRef][PubMed]
    [Google Scholar]
  24. Watanabe T., Kojima H., Fukui M.. 2014; Complete genomes of freshwater sulfur oxidizers Sulfuricella denitrificans skB26 and Sulfuritalea hydrogenivorans sk43H: genetic insights into the sulfur oxidation pathway of betaproteobacteria. Syst Appl Microbiol37:387–395 [CrossRef][PubMed]
    [Google Scholar]
  25. Watanabe T., Kojima H., Fukui M.. 2015a; Sulfuriferula multivorans gen. nov., sp. nov., isolated from a freshwater lake, reclassification of ‘Thiobacillus plumbophilus’ as Sulfuriferula plumbophilus sp. nov., and description of Sulfuricellaceae fam. nov. and Sulfuricellales ord. nov. Int J Syst Evol Microbiol65:1504–1508 [CrossRef][PubMed]
    [Google Scholar]
  26. Watanabe T., Kojima H., Fukui M.. 2015b; Draft genome sequence of a sulfur-oxidizing autotroph. Sulfuricella sp. strain T08, isolated from a freshwater lake. Genome Announc3:e00498–e00415 [CrossRef][PubMed]
    [Google Scholar]
  27. Widdel F., Bak F.. 1992; Gram-negative mesotrophic sulfate- reducing bacteria. In The Prokaryotes, 4 2nd edn.. pp3352–3378 [CrossRef]Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H.. New York: Springer-Verlag;
    [Google Scholar]
  28. Zhong F., Wu J., Dai Y., Yang L., Zhang Z., Cheng S., Zhang Q.. 2015; Bacterial community analysis by PCR-DGGE and 454-pyrosequencing of horizontal subsurface flow constructed wetlands with front aeration. Appl Microbiol Biotechnol99:1499–1512 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000679
Loading
/content/journal/ijsem/10.1099/ijsem.0.000679
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error