1887

Abstract

An obligately thermophilic, chemolithotrophic, microaerophilic bacterium, designated strain GBS1, was isolated from the water column of Great Boiling Spring, Nevada, USA. Thiosulfate was required for growth. Although capable of autotrophy, growth of GBS1 was enhanced in the presence of acetate, peptone or Casamino acids. Growth occurred at 70–85 °C with an optimum at 80 °C, at pH 6.50–7.75 with an optimum at pH 7.25, with 0.5–8 % oxygen with an optimum at 1–2 % and with ≤ 200 mM NaCl. The doubling time under optimal growth conditions was 1.3 h, with a final mean cell density of 6.2 ± 0.5 × 10 cells ml. Non-motile, rod-shaped cells 1.4–2.4 × 0.4–0.6 μm in size occurred singly or in pairs. The major cellular fatty acids (>5 % of the total) were Cω9, C, C and C. Phylogenetic analysis of the GBS1 16S rRNA gene sequence indicated an affiliation with and other species of the genus , but determination of 16S rRNA gene sequence similarity ( ≤ 97.10 %) and estimated DNA–DNA hybridization values ( ≤ 18.4 %) with the type strains of recognized species indicate that the novel strain is distinct from described species. Based on phenotypic, genotypic and phylogenetic characteristics, a novel species, sp. nov., is proposed, with GBS1 ( = JCM 19133 = DSM 27162) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000647
2015-12-01
2020-12-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/12/4769.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000647&mimeType=html&fmt=ahah

References

  1. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. ( 1979;). Methanogens: reevaluation of a unique biological group. Microbiol Rev 43 260296.
    [Google Scholar]
  2. Blank C. E., Cady S. L., Pace N. R. ( 2002;). Microbial composition of near-boiling silica-depositing thermal springs throughout Yellowstone National Park. Appl Environ Microbiol 68 51235135 [CrossRef].
    [Google Scholar]
  3. Boyd E. S., Leavitt W. D., Geesey G. G. ( 2009;). CO2 uptake and fixation by a thermoacidophilic microbial community attached to precipitated sulfur in a geothermal spring. Appl Environ Microbiol 75 42894296 [CrossRef].
    [Google Scholar]
  4. Caldwell S. L., Liu Y., Ferrera I., Beveridge T., Reysenbach A.-L. ( 2010;). Thermocrinis minervae sp. nov., a hydrogen- and sulfur-oxidizing, thermophilic member of the Aquificales from a Costa Rican terrestrial hot spring. Int J Syst Evol Microbiol 60 338343 [CrossRef].
    [Google Scholar]
  5. Cole J. K., Peacock J. P., Dodsworth J. A., Williams A. J., Thompson D. B., Dong H., Wu G., Hedlund B. P. ( 2013a;). Sediment microbial communities in Great Boiling Spring are controlled by temperature and distinct from water communities. ISME J 7 718729 [CrossRef].
    [Google Scholar]
  6. Cole J. K., Gieler B. A., Heisler D. L., Palisoc M. M., Williams A. J., Dohnalkova A. C., Ming H., Yu T. T., Dodsworth J. A., other authors. ( 2013b;). Kallotenue papyrolyticum gen. nov., sp. nov., a cellulolytic and filamentous thermophile that represents a novel lineage (Kallotenuales ord. nov., Kallotenuaceae fam. nov.) within the class Chloroflexia . Int J Syst Evol Microbiol 63 46754682 [CrossRef].
    [Google Scholar]
  7. Connon S. A., Koski A. K., Neal A. L., Wood S. A., Magnuson T. S. ( 2008;). Ecophysiology and geochemistry of microbial arsenic oxidation within a high arsenic, circumneutral hot spring system of the Alvord Desert. FEMS Microbiol Ecol 64 117128 [CrossRef].
    [Google Scholar]
  8. Costa K. C., Navarro J. B., Shock E. L., Zhang C. L., Soukup D., Hedlund B. P. ( 2009;). Microbiology and geochemistry of great boiling and mud hot springs in the United States Great Basin. Extremophiles 13 447459 [CrossRef].
    [Google Scholar]
  9. Dodsworth J. A., Gevorkian J., Despujos F., Cole J. K., Murugapiran S. K., Ming H., Li W.-J., Zhang G., Dohnalkova A., Hedlund B. P. ( 2014;). Thermoflexus hugenholtzii gen. nov., sp. nov., a thermophilic, microaerophilic, filamentous bacterium representing a novel class in the Chloroflexi, Thermoflexia classis nov., and description of Thermoflexaceae fam. nov. and Thermoflexales ord. nov. Int J Syst Evol Microbiol 64 21192127 [CrossRef].
    [Google Scholar]
  10. Eder W., Huber R. ( 2002;). New isolates and physiological properties of the Aquificales and description of Thermocrinis albus sp. nov. Extremophiles 6 309318 [CrossRef].
    [Google Scholar]
  11. Felsenstein J. ( 1989;). phylip – phylogeny inference package (version 3.2). Cladistics 5 164166.
    [Google Scholar]
  12. Hall J. R., Mitchell K. R., Jackson-Weaver O., Kooser A. S., Cron B. R., Crossey L. J., Takacs-Vesbach C. D. ( 2008;). Molecular characterization of the diversity and distribution of a thermal spring microbial community by using rRNA and metabolic genes. Appl Environ Microbiol 74 49104922 [CrossRef].
    [Google Scholar]
  13. Hedlund B. P., Reysenbach A.-L., Huang L., Ong J. C., Liu Z., Dodsworth J. A., Ahmed R., Williams A. J., Briggs B. R., other authors. ( 2015;). Isolation of diverse members of the Aquificales from geothermal springs in Tengchong. China. Front Microbiol 6 157 [CrossRef].
    [Google Scholar]
  14. Huber R., Eder W., Heldwein S., Wanner G., Huber H., Rachel R., Stetter K. O. ( 1998;). Thermocrinis ruber gen. nov., sp. nov., a pink-filament-forming hyperthermophilic bactrium isolated from Yellowstone National Park. Appl Environ Microbiol 64 35763583.
    [Google Scholar]
  15. Jahnke L. L., Eder W., Huber R., Hope J. M., Hinrichs K. U., Hayes J. M., Des Marais D. J., Cady S. L., Summons R. E. ( 2001;). Signature lipids and stable carbon isotope analyses of Octopus Spring hyperthermophilic communities compared with those of Aquificales representatives. Appl Environ Microbiol 67 51795189 [CrossRef].
    [Google Scholar]
  16. Johnson D. B., Rolfe S., Hallberg K. B., Iversen E. ( 2001;). Isolation and phylogenetic characterization of acidophilic microorganisms indigenous to acidic drainage waters at an abandoned Norwegian copper mine. Environ Microbiol 3 630637 [CrossRef].
    [Google Scholar]
  17. Kim O.-S., Cho Y.-J., Lee K., Yoon S.-H., Kim M., Na H., Park S.-C., Jeon Y. S., Lee J.-H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62 716721 [CrossRef].
    [Google Scholar]
  18. Meier-Kolthoff J. P., Auch A. F., Klenk H.-P., Göker M. ( 2013;). Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14 60 [CrossRef].
    [Google Scholar]
  19. Meyer-Dombard D. R., Shock E. L., Amend J. P. ( 2005;). Archaeal and bacterial communities in geochemically diverse hot springs of Yellowstone National Park, USA. Geobiology 3 211227 [CrossRef].
    [Google Scholar]
  20. Meyer-Dombard D. R., Swingley W., Raymond J., Havig J., Shock E. L., Summons R. E. ( 2011;). Hydrothermal ecotones and streamer biofilm communities in the Lower Geyser Basin, Yellowstone National Park. Environ Microbiol 13 22162231 [CrossRef].
    [Google Scholar]
  21. Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., Peplies J., Glöckner F. O., ribosomal R.N.A. ( 2013;). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41 (D1), D590D596 [CrossRef].
    [Google Scholar]
  22. Reysenbach A. L., Wickham G. S., Pace N. R. ( 1994;). Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring, Yellowstone National Park. Appl Environ Microbiol 60 21132119.
    [Google Scholar]
  23. Schloss P. D., Westcott S. L., Ryabin T., Hall J. R., Hartmann M., Hollister E. B., Lesniewski R. A., Oakley B. B., Parks D. H., other authors. ( 2009;). Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75 75377541 [CrossRef].
    [Google Scholar]
  24. Spear J. R., Walker J. J., McCollom T. M., Pace N. R. ( 2005;). Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. Proc Natl Acad Sci U S A 102 25552560 [CrossRef].
    [Google Scholar]
  25. Stamatakis A. ( 2006;). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22 26882690 [CrossRef].
    [Google Scholar]
  26. Sutcliffe I. C. ( 2011;). Cell envelope architecture in the Chloroflexi: a shifting frontline in a phylogenetic turf war. Environ Microbiol 13 279282 [CrossRef].
    [Google Scholar]
  27. Takacs C. D., Ehringer M., Favre R., Cermola M., Eggertsson G., Palsdottir A., Reysenbach A.-L. ( 2001;). Phylogenetic characterization of the blue filamentous bacterial community from an Icelandic geothermal spring. FEMS Microbiol Ecol 35 123128 [CrossRef].
    [Google Scholar]
  28. Vick T. J., Dodsworth J. A., Costa K. C., Shock E. L., Hedlund B. P. ( 2010;). Microbiology and geochemistry of Little Hot Creek, a hot spring environment in the Long Valley Caldera. Geobiology 8 140154 [CrossRef].
    [Google Scholar]
  29. Wirth R., Sikorski J., Brambilla E., Misra M., Lapidus A., Copeland A., Nolan M., Lucas S., Chen F., other authors. ( 2010;). Complete genome sequence of Thermocrinis albus type strain (HI 11/12). Stand Genomic Sci 2 194202 [CrossRef].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000647
Loading
/content/journal/ijsem/10.1099/ijsem.0.000647
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error