1887

Abstract

A novel yellow-pigmented, aerobic, rod-shaped, non-motile bacterium, designated strain CC-MF41, was isolated from rhizosphere soil of maize () collected in Wufeng District, Taichung, Taiwan. Strain CC-MF41 exhibited 16S rRNA gene sequence similarity of 97.5, 97.3, 97.2 and 97.1 % to MM2LB (and ‘’ F3-P9 and ‘’ Re-6, the names of which have not been validly published), K70/01, IFO 15245 and ‘’ A23. However, CC-MF41 and ‘’ A23 formed a loosely bound phylogenetic lineage (with a low bootstrap value) associated with species of the genus . In DNA–DNA reassociation experiments, the relatedness of strain CC-MF41 to DSM 19883 was 57.1 % (reciprocal value 29.1 %). The DNA G+C content of strain CC-MF41 was 72.1 mol% and the cell-wall peptidoglycan contained 2,4-diaminobutyric acid, alanine, glycine, glutamic acid and threonine. The major menaquinone was MK-11 and the predominant fatty acids were iso-C, anteiso-C and anteiso-C. The polar lipid profile of strain CC-MF41 contained major amounts of diphosphatidylglycerol followed by an unidentified glycolipid, phosphatidylglycerol and an unknown phospholipid. Based on its phylogenetic, phenotypic and chemotaxonomic distinctiveness, strain CC-MF41 represents a novel species of , for which the name sp. nov. is proposed. The type strain is CC-MF41 ( = BCRC 80515 = LMG 27265).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000640
2015-12-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/12/4734.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000640&mimeType=html&fmt=ahah

References

  1. Behrendt U. , Ulrich A. , Schumann P. . ( 2008;). Leucobacter tardus sp. nov., isolated from the phyllosphere of Solanum tuberosum L. Int J Syst Evol Microbiol 58: 2574–2578 [CrossRef] [PubMed].
    [Google Scholar]
  2. Brosius J. , Palmer M. L. , Kennedy P. J. , Noller H. F. . ( 1978;). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci U S A 75: 4801–4805 [CrossRef] [PubMed].
    [Google Scholar]
  3. Castro G. R. , Stettler A. O. , Ferrero M. A. , Siñeriz F. . ( 1992;). Selection of an extracellular esterase-producing microorganism. J Ind Microbiol 10: 165–168 [CrossRef].
    [Google Scholar]
  4. Chun J. , Lee J. H. , Jung Y. , Kim M. , Kim S. , Kim B. K. , Lim Y. W. . ( 2007;). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57: 2259–2261 [CrossRef] [PubMed].
    [Google Scholar]
  5. Collins M. D. . ( 1985;). Isoprenoid quinone analysis in classification and identification. . In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by Goodfellow M. , Minnikin D. E. . London: Academic Press;.
    [Google Scholar]
  6. Cowan S. T. , Steel K. J. . ( 1993;). In Cowan and Steel's Manual for the Identification of Medical Bacteria , 3rd edn.. Edited by Barrow G. I. , Feltham R. K. A. . Cambridge: Cambridge University Press;.
    [Google Scholar]
  7. Edwards U. , Rogall T. , Blöcker H. , Emde M. , Böttger E. C. . ( 1989;). Isolation and direct complete nucleotide determination of entire genes, Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17: 7843–7853 [CrossRef] [PubMed].
    [Google Scholar]
  8. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  9. Felsenstein J. . ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  10. Felsenstein J. . ( 1993;). PHYLIP (Phylogeny Inference Package), version 3.5.1. Distributed by the author. . In Department of Genome Sciences., Seattle, USA: University of Washington;.
    [Google Scholar]
  11. Fitch W. M. . ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  12. Halpern M. , Shakéd T. , Pukall R. , Schumann P. . ( 2009;). Leucobacter chironomi sp. nov., a chromate-resistant bacterium isolated from a chironomid egg mass. Int J Syst Evol Microbiol 59: 665–670 [CrossRef] [PubMed].
    [Google Scholar]
  13. Heiner C. R. , Hunkapiller K. L. , Chen S. M. , Glass J. I. , Chen E. Y. . ( 1998;). Sequencing multimegabase-template DNA with BigDye terminator chemistry. Genome Res 8: 557–561 [PubMed].
    [Google Scholar]
  14. Her J. , Lee S. S. . ( 2015;). Leucobacter humi sp. nov., isolated from forest soil. Curr Microbiol 71: 235–242 [CrossRef] [PubMed].
    [Google Scholar]
  15. Jukes T. , Cantor C. R. . ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, pp. 21–132. Edited by Munro H. N. . 3 New York: [CrossRef] Academic Press;.
    [Google Scholar]
  16. Kim H.-J. , Lee S.-S. . ( 2011;). Leucobacter kyeonggiensis sp. nov., a new species isolated from dye waste water. J Microbiol 49: 1044–1049 [CrossRef] [PubMed].
    [Google Scholar]
  17. Kim M. , Oh H. S. , Park S. C. , Chun J. . ( 2014;). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64: 346–351 [CrossRef] [PubMed].
    [Google Scholar]
  18. Kimura M. . ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120 [CrossRef] [PubMed].
    [Google Scholar]
  19. Lee J.-H. , Lee S.-S. . ( 2012;). Leucobacter margaritiformis sp. nov., isolated from bamboo extract. Curr Microbiol 64: 441–448 [CrossRef] [PubMed].
    [Google Scholar]
  20. Lin Y. C. , Uemori K. , de Briel D. A. , Arunpairojana V. , Yokota A. . ( 2004;). Zimmermannella helvola gen. nov., sp. nov., Zimmermannella alba sp. nov., Zimmermannella bifida sp. nov., Zimmermannella faecalis sp. nov. and Leucobacter albus sp. nov., novel members of the family Microbacteriaceae . Int J Syst Evol Microbiol 54: 1669–1676 [CrossRef] [PubMed].
    [Google Scholar]
  21. Martin E. , Lodders N. , Jäckel U. , Schumann P. , Kämpfer P. . ( 2010;). Leucobacter aerolatus sp. nov., from the air of a duck barn. Int J Syst Evol Microbiol 60: 2838–2842 [CrossRef] [PubMed].
    [Google Scholar]
  22. Meier-Kolthoff J. P. , Göker M. , Spröer C. , Klenk H.-P. . ( 2013;). When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 195: 413–418 [CrossRef] [PubMed].
    [Google Scholar]
  23. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  24. Miller L. T. . ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16: 584–586 [PubMed].
    [Google Scholar]
  25. Minnikin D. E. , O'Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal K. , Parlett J. H. . ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  26. Morais P. V. , Francisco R. , Branco R. , Chung A. P. , da Costa M. S. . ( 2004;). Leucobacter chromiireducens sp. nov., and Leucobacter aridicollis sp. nov., two new species isolated from a chromium contaminated environment. Syst Appl Microbiol 27: 646–652 [CrossRef] [PubMed].
    [Google Scholar]
  27. Morais P. V. , Paulo C. , Francisco R. , Branco R. , Chung A. P. , da Costa M. S. . ( 2006a;). Leucobacter luti sp. nov., and Leucobacter alluvii sp. nov., two new species of the genus Leucobacter isolated under chromium stress. Syst Appl Microbiol 29: 414–421 [CrossRef] [PubMed].
    [Google Scholar]
  28. Morais P. V. , Paulo C. , Francisco R. , Branco R. , Chung A. P. , da Costa M. S. . ( 2006b;). Leucobacter alluvii sp. nov. and Leucobacter luti sp. nov. In List of new names and new combinations previously effectively, but not validly, published, Validation List 112. Int J Syst Evol Microbiol 56: 2507–2508 [CrossRef] [PubMed].
    [Google Scholar]
  29. Muir R. E. , Tan M.-W. . ( 2007;). Leucobacter chromiireducens subsp. solipictus subsp. nov., a pigmented bacterium isolated from the nematode Caenorhabditis elegans, and emended description of L. chromiireducens . Int J Syst Evol Microbiol 57: 2770–2776 [CrossRef] [PubMed].
    [Google Scholar]
  30. Murray R. G. E. , Doetsch R. N. , Robinow C. F. . ( 1994;). Determination and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 32–34. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  31. Paisley R. . ( 1996;). MIS Whole Cell Fatty Acid Analysis by Gas Chromatography Training Manual Newark, DE: MIDI;.
    [Google Scholar]
  32. Rosenthal R. S. , Dziarski R. . ( 1994;). Isolation of peptidoglycan and soluble peptidoglycan fragments. Methods Enzymol 235: 253–285 [CrossRef] [PubMed].
    [Google Scholar]
  33. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  34. Sasser M. . ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  35. Schleifer K. H. , Kandler O. . ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36: 407–477 [PubMed].
    [Google Scholar]
  36. Seldin L. , Dubnau D. . ( 1985;). Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. Int J Syst Bacteriol 35: 151–154 [CrossRef].
    [Google Scholar]
  37. Shin N.-R. , Kim M.-S. , Jung M.-J. , Roh S. W. , Nam Y.-D. , Park E.-J. , Bae J.-W. . ( 2011;). Leucobacter celer sp. nov., isolated from Korean fermented seafood. Int J Syst Evol Microbiol 61: 2353–2357 [CrossRef] [PubMed].
    [Google Scholar]
  38. Smibert R. M. , Krieg N. R. . ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  39. Somvanshi V. S. , Lang E. , Schumann P. , Pukall R. , Kroppenstedt R. M. , Ganguly S. , Stackebrandt E. . ( 2007;). Leucobacter iarius sp. nov., in the family Microbacteriaceae . Int J Syst Evol Microbiol 57: 682–686 [CrossRef] [PubMed].
    [Google Scholar]
  40. Stackebrandt E. , Ebers J. . ( 2006;). Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33: 152–155.
    [Google Scholar]
  41. Takeuchi M. , Weiss N. , Schumann P. , Yokota A. . ( 1996;). Leucobacter komagatae gen. nov., sp. nov., a new aerobic gram-positive, nonsporulating rod with 2,4-diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46: 967–971 [CrossRef] [PubMed].
    [Google Scholar]
  42. Tamura K. , Stecher G. , Peterson D. , Filipski A. , Kumar S. . ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  43. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  44. Ue H. . ( 2011a;). Leucobacter exalbidus sp. nov., an actinobacterium isolated from a mixed culture from compost. J Gen Appl Microbiol 57: 27–33 [CrossRef] [PubMed].
    [Google Scholar]
  45. Ue H. . ( 2011b;). Leucobacter exalbidus sp. nov. In List of new names and new combinations previously effectively, but not validly, published, Validation List 140. Int J Syst Evol Microbiol 61: 1499–1501 [CrossRef].
    [Google Scholar]
  46. Weon H.-Y. , Anandham R. , Tamura T. , Hamada M. , Kim S.-J. , Kim Y.-S. , Suzuki K. , Kwon S.-W. . ( 2012a;). Leucobacter denitrificans sp. nov., isolated from cow dung. J Microbiol 50: 161–165 [CrossRef] [PubMed].
    [Google Scholar]
  47. Weon H.-Y. , Anandham R. , Tamura T. , Hamada M. , Kim S.-J. , Kim Y.-S. , Suzuki K. , Kwon S.-W. . ( 2012b;). Leucobacter denitrificans sp. nov. In List of new names and new combinations previously effectively, but not validly, published, Validation List 145. Int J Syst Evol Microbiol 62: 1017–1019 [CrossRef].
    [Google Scholar]
  48. White J. A. , Hart R. J. , Fry J. C. . ( 1986;). An evaluation of the Waters Pico-Tag system for the amino-acid analysis of food materials. J Automat Chem 8: 170–177 [CrossRef] [PubMed].
    [Google Scholar]
  49. Young C.-C. , Kämpfer P. , Shen F.-T. , Lai W.-A. , Arun A. B. . ( 2005;). Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (garden lettuce). Int J Syst Evol Microbiol 55: 423–426 [CrossRef] [PubMed].
    [Google Scholar]
  50. Yun J. H. , Roh S. W. , Kim M.-S. , Jung M.-J. , Park E.-J. , Shin K.-S. , Nam Y.-D. , Bae J.-W. . ( 2011;). Leucobacter salsicius sp. nov., from a salt-fermented food. Int J Syst Evol Microbiol 61: 502–506 [PubMed].[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000640
Loading
/content/journal/ijsem/10.1099/ijsem.0.000640
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error