1887

Abstract

A novel yellow-pigmented, aerobic, rod-shaped, non-motile bacterium, designated strain CC-MF41, was isolated from rhizosphere soil of maize () collected in Wufeng District, Taichung, Taiwan. Strain CC-MF41 exhibited 16S rRNA gene sequence similarity of 97.5, 97.3, 97.2 and 97.1 % to MM2LB (and ‘’ F3-P9 and ‘’ Re-6, the names of which have not been validly published), K70/01, IFO 15245 and ‘’ A23. However, CC-MF41 and ‘’ A23 formed a loosely bound phylogenetic lineage (with a low bootstrap value) associated with species of the genus . In DNA–DNA reassociation experiments, the relatedness of strain CC-MF41 to DSM 19883 was 57.1 % (reciprocal value 29.1 %). The DNA G+C content of strain CC-MF41 was 72.1 mol% and the cell-wall peptidoglycan contained 2,4-diaminobutyric acid, alanine, glycine, glutamic acid and threonine. The major menaquinone was MK-11 and the predominant fatty acids were iso-C, anteiso-C and anteiso-C. The polar lipid profile of strain CC-MF41 contained major amounts of diphosphatidylglycerol followed by an unidentified glycolipid, phosphatidylglycerol and an unknown phospholipid. Based on its phylogenetic, phenotypic and chemotaxonomic distinctiveness, strain CC-MF41 represents a novel species of , for which the name sp. nov. is proposed. The type strain is CC-MF41 ( = BCRC 80515 = LMG 27265).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000640
2015-12-01
2021-03-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/12/4734.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000640&mimeType=html&fmt=ahah

References

  1. Behrendt U., Ulrich A., Schumann P. ( 2008;). Leucobacter tardus sp. nov., isolated from the phyllosphere of Solanum tuberosum L. Int J Syst Evol Microbiol 58 25742578 [CrossRef] [PubMed].
    [Google Scholar]
  2. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. ( 1978;). Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci U S A 75 48014805 [CrossRef] [PubMed].
    [Google Scholar]
  3. Castro G. R., Stettler A. O., Ferrero M. A., Siñeriz F. ( 1992;). Selection of an extracellular esterase-producing microorganism. J Ind Microbiol 10 165168 [CrossRef].
    [Google Scholar]
  4. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. ( 2007;). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57 22592261 [CrossRef] [PubMed].
    [Google Scholar]
  5. Collins M. D. ( 1985;). Isoprenoid quinone analysis in classification and identification. . In Chemical Methods in Bacterial Systematics, pp. 267287. Edited by Goodfellow M., Minnikin D. E. London: Academic Press;.
    [Google Scholar]
  6. Cowan S. T., Steel K. J. ( 1993). In Cowan and Steel's Manual for the Identification of Medical Bacteria , 3rd edn.. Edited by Barrow G. I., Feltham R. K. A. Cambridge: Cambridge University Press;.
    [Google Scholar]
  7. Edwards U., Rogall T., Blöcker H., Emde M., Böttger E. C. ( 1989;). Isolation and direct complete nucleotide determination of entire genes, Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17 78437853 [CrossRef] [PubMed].
    [Google Scholar]
  8. Felsenstein J. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17 368376 [CrossRef] [PubMed].
    [Google Scholar]
  9. Felsenstein J. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39 783791 [CrossRef].
    [Google Scholar]
  10. Felsenstein J. ( 1993;). PHYLIP (Phylogeny Inference Package), version 3.5.1. Distributed by the author. . In Department of Genome Sciences., Seattle, USA: University of Washington;.
    [Google Scholar]
  11. Fitch W. M. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20 406416 [CrossRef].
    [Google Scholar]
  12. Halpern M., Shakéd T., Pukall R., Schumann P. ( 2009;). Leucobacter chironomi sp. nov., a chromate-resistant bacterium isolated from a chironomid egg mass. Int J Syst Evol Microbiol 59 665670 [CrossRef] [PubMed].
    [Google Scholar]
  13. Heiner C. R., Hunkapiller K. L., Chen S. M., Glass J. I., Chen E. Y. ( 1998;). Sequencing multimegabase-template DNA with BigDye terminator chemistry. Genome Res 8 557561 [PubMed].
    [Google Scholar]
  14. Her J., Lee S. S. ( 2015;). Leucobacter humi sp. nov., isolated from forest soil. Curr Microbiol 71 235242 [CrossRef] [PubMed].
    [Google Scholar]
  15. Jukes T., Cantor C. R. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, pp. 21132. Edited by Munro H. N. 3 New York: [CrossRef] Academic Press;.
    [Google Scholar]
  16. Kim H.-J., Lee S.-S. ( 2011;). Leucobacter kyeonggiensis sp. nov., a new species isolated from dye waste water. J Microbiol 49 10441049 [CrossRef] [PubMed].
    [Google Scholar]
  17. Kim M., Oh H. S., Park S. C., Chun J. ( 2014;). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64 346351 [CrossRef] [PubMed].
    [Google Scholar]
  18. Kimura M. ( 1980;). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16 111120 [CrossRef] [PubMed].
    [Google Scholar]
  19. Lee J.-H., Lee S.-S. ( 2012;). Leucobacter margaritiformis sp. nov., isolated from bamboo extract. Curr Microbiol 64 441448 [CrossRef] [PubMed].
    [Google Scholar]
  20. Lin Y. C., Uemori K., de Briel D. A., Arunpairojana V., Yokota A. ( 2004;). Zimmermannella helvola gen. nov., sp. nov., Zimmermannella alba sp. nov., Zimmermannella bifida sp. nov., Zimmermannella faecalis sp. nov. and Leucobacter albus sp. nov., novel members of the family Microbacteriaceae . Int J Syst Evol Microbiol 54 16691676 [CrossRef] [PubMed].
    [Google Scholar]
  21. Martin E., Lodders N., Jäckel U., Schumann P., Kämpfer P. ( 2010;). Leucobacter aerolatus sp. nov., from the air of a duck barn. Int J Syst Evol Microbiol 60 28382842 [CrossRef] [PubMed].
    [Google Scholar]
  22. Meier-Kolthoff J. P., Göker M., Spröer C., Klenk H.-P. ( 2013;). When should a DDH experiment be mandatory in microbial taxonomy?. Arch Microbiol 195 413418 [CrossRef] [PubMed].
    [Google Scholar]
  23. Mesbah M., Premachandran U., Whitman W. B. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39 159167 [CrossRef].
    [Google Scholar]
  24. Miller L. T. ( 1982;). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16 584586 [PubMed].
    [Google Scholar]
  25. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal K., Parlett J. H. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2 233241 [CrossRef].
    [Google Scholar]
  26. Morais P. V., Francisco R., Branco R., Chung A. P., da Costa M. S. ( 2004;). Leucobacter chromiireducens sp. nov., and Leucobacter aridicollis sp. nov., two new species isolated from a chromium contaminated environment. Syst Appl Microbiol 27 646652 [CrossRef] [PubMed].
    [Google Scholar]
  27. Morais P. V., Paulo C., Francisco R., Branco R., Chung A. P., da Costa M. S. ( 2006a;). Leucobacter luti sp. nov., and Leucobacter alluvii sp. nov., two new species of the genus Leucobacter isolated under chromium stress. Syst Appl Microbiol 29 414421 [CrossRef] [PubMed].
    [Google Scholar]
  28. Morais P. V., Paulo C., Francisco R., Branco R., Chung A. P., da Costa M. S. ( 2006b;). Leucobacter alluvii sp. nov. and Leucobacter luti sp. nov. In List of new names and new combinations previously effectively, but not validly, published, Validation List 112. Int J Syst Evol Microbiol 56 25072508 [CrossRef] [PubMed].
    [Google Scholar]
  29. Muir R. E., Tan M.-W. ( 2007;). Leucobacter chromiireducens subsp. solipictus subsp. nov., a pigmented bacterium isolated from the nematode Caenorhabditis elegans, and emended description of L. chromiireducens . Int J Syst Evol Microbiol 57 27702776 [CrossRef] [PubMed].
    [Google Scholar]
  30. Murray R. G. E., Doetsch R. N., Robinow C. F. ( 1994;). Determination and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 3234. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  31. Paisley R. ( 1996). MIS Whole Cell Fatty Acid Analysis by Gas Chromatography Training Manual Newark, DE: MIDI;.
    [Google Scholar]
  32. Rosenthal R. S., Dziarski R. ( 1994;). Isolation of peptidoglycan and soluble peptidoglycan fragments. Methods Enzymol 235 253285 [CrossRef] [PubMed].
    [Google Scholar]
  33. Saitou N., Nei M. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4 406425 [PubMed].
    [Google Scholar]
  34. Sasser M. ( 1990). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  35. Schleifer K. H., Kandler O. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36 407477 [PubMed].
    [Google Scholar]
  36. Seldin L., Dubnau D. ( 1985;). Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. Int J Syst Bacteriol 35 151154 [CrossRef].
    [Google Scholar]
  37. Shin N.-R., Kim M.-S., Jung M.-J., Roh S. W., Nam Y.-D., Park E.-J., Bae J.-W. ( 2011;). Leucobacter celer sp. nov., isolated from Korean fermented seafood. Int J Syst Evol Microbiol 61 23532357 [CrossRef] [PubMed].
    [Google Scholar]
  38. Smibert R. M., Krieg N. R. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  39. Somvanshi V. S., Lang E., Schumann P., Pukall R., Kroppenstedt R. M., Ganguly S., Stackebrandt E. ( 2007;). Leucobacter iarius sp. nov., in the family Microbacteriaceae . Int J Syst Evol Microbiol 57 682686 [CrossRef] [PubMed].
    [Google Scholar]
  40. Stackebrandt E., Ebers J. ( 2006;). Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33 152155.
    [Google Scholar]
  41. Takeuchi M., Weiss N., Schumann P., Yokota A. ( 1996;). Leucobacter komagatae gen. nov., sp. nov., a new aerobic gram-positive, nonsporulating rod with 2,4-diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46 967971 [CrossRef] [PubMed].
    [Google Scholar]
  42. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30 27252729 [CrossRef] [PubMed].
    [Google Scholar]
  43. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25 48764882 [CrossRef] [PubMed].
    [Google Scholar]
  44. Ue H. ( 2011a;). Leucobacter exalbidus sp. nov., an actinobacterium isolated from a mixed culture from compost. J Gen Appl Microbiol 57 2733 [CrossRef] [PubMed].
    [Google Scholar]
  45. Ue H. ( 2011b;). Leucobacter exalbidus sp. nov. In List of new names and new combinations previously effectively, but not validly, published, Validation List 140. Int J Syst Evol Microbiol 61 14991501 [CrossRef].
    [Google Scholar]
  46. Weon H.-Y., Anandham R., Tamura T., Hamada M., Kim S.-J., Kim Y.-S., Suzuki K., Kwon S.-W. ( 2012a;). Leucobacter denitrificans sp. nov., isolated from cow dung. J Microbiol 50 161165 [CrossRef] [PubMed].
    [Google Scholar]
  47. Weon H.-Y., Anandham R., Tamura T., Hamada M., Kim S.-J., Kim Y.-S., Suzuki K., Kwon S.-W. ( 2012b;). Leucobacter denitrificans sp. nov. In List of new names and new combinations previously effectively, but not validly, published, Validation List 145. Int J Syst Evol Microbiol 62 10171019 [CrossRef].
    [Google Scholar]
  48. White J. A., Hart R. J., Fry J. C. ( 1986;). An evaluation of the Waters Pico-Tag system for the amino-acid analysis of food materials. J Automat Chem 8 170177 [CrossRef] [PubMed].
    [Google Scholar]
  49. Young C.-C., Kämpfer P., Shen F.-T., Lai W.-A., Arun A. B. ( 2005;). Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L. (garden lettuce). Int J Syst Evol Microbiol 55 423426 [CrossRef] [PubMed].
    [Google Scholar]
  50. Yun J. H., Roh S. W., Kim M.-S., Jung M.-J., Park E.-J., Shin K.-S., Nam Y.-D., Bae J.-W. ( 2011;). Leucobacter salsicius sp. nov., from a salt-fermented food. Int J Syst Evol Microbiol 61 502506 [PubMed]. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000640
Loading
/content/journal/ijsem/10.1099/ijsem.0.000640
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error