1887

Abstract

Seven slow-growing rhizobia isolated from effective nodules of were assigned to the genus based on sharing 96.3–99.9 % 16S rRNA gene sequence similarity with the type strains of recognized species. Multilocus sequence analysis of , , and genes indicated that the seven strains belonged to two novel species represented by CCBAU 51649 and CCBAU 53363. Strain CCBAU 51649 shared 94, 93.4, 92.3 and 94.9 % and CCBAU 53363 shared 91.4, 94.5, 94.6 and 97.7 % sequence similarity for the , and genes, respectively, with respect to the closest related species BR 3351 and CCBAU 10071. Summed feature 8 and C were the predominant fatty acid components for strains CCBAU 51649 and CCBAU 53363. DNA–DNA hybridization and analysis of phenotypic characteristics also distinguished these strains from the closest related species. The strains formed effective nodules on , and , and they had identical genes to sp. PI237 but were phylogenetically divergent from other available genes at less than 66 % similarity. Based in these results, strains CCBAU 51649 ( = CGMCC 1.15034 = LMG 28620) and CCBAU 53363 ( = CGMCC 1.15035 = LMG 28621) are designated the type strains of two novel species, for which the names sp. nov. and sp. nov. are proposed, respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000629
2015-12-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/12/4655.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000629&mimeType=html&fmt=ahah

References

  1. Chaintreuil C. , Boivin C. , Dreyfus B. , Giraud E. . ( 2001;). Characterization of the common nodulation genes of the photosynthetic Bradyrhizobium sp. ORS285 reveals the presence of a new insertion sequence upstream of nodA . FEMS Microbiol Lett 194: 83–86 [CrossRef] [PubMed].
    [Google Scholar]
  2. Chang Y. L. , Wang J. Y. , Wang E. T. , Liu H. C. , Sui X. H. , Chen W. X. . ( 2011;). Bradyrhizobium lablabi sp. nov., isolated from effective nodules of Lablab purpureus and Arachis hypogaea . Int J Syst Evol Microbiol 61: 2496–2502.[CrossRef]
    [Google Scholar]
  3. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12: 133–142 [CrossRef] [PubMed].
    [Google Scholar]
  4. Doignon-Bourcier F. , Willems A. , Coopman R. , Laguerre G. , Gillis M. , de Lajudie P. . ( 2000;). Genotypic characterization of Bradyrhizobium strains nodulating small Senegalese legumes by 16S–23S rRNA intergenic gene spacers and amplified fragment length polymorphism fingerprint analyses. Appl Environ Microbiol 66: 3987–3997 [CrossRef] [PubMed].
    [Google Scholar]
  5. Gao J. L. , Sun J. G. , Li Y. , Wang E. T. , Chen W. X. . ( 1994;). Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan Province, China. Int J Syst Bacteriol 44: 151–158.[CrossRef]
    [Google Scholar]
  6. García-Fraile P. , Mulas-García D. , Peix A. , Rivas R. , González-Andrés F. , Velázquez E. . ( 2010;). Phaseolus vulgaris is nodulated in northern Spain by Rhizobium leguminosarum strains harboring two nodC alleles present in American Rhizobium etli strains: biogeographical and evolutionary implications. Can J Microbiol 56: 657–666 [CrossRef] [PubMed].
    [Google Scholar]
  7. Graham P. , Sadowsky M. , Keyser H. , Barnet Y. , Bradley R. , Cooper J. , De Ley D. , Jarvis B. , Roslycky E. , other authors . ( 1991;). Proposed minimal standards for the description of new genera and species of root- and stem-nodulating bacteria. Int J Syst Bacteriol 41: 582–587.[CrossRef]
    [Google Scholar]
  8. Jordan D. C. . ( 1982;). Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow-growing, root nodule bacteria from leguminous plants. Int J Syst Bacteriol 32: 136–139 [CrossRef].
    [Google Scholar]
  9. Kimura M. . ( 1983;). Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [CrossRef].
    [Google Scholar]
  10. Kumar N. , Lad G. , Giuntini E. , Kaye M. E. , Udomwong P. , Shamsani N. J. , Young J. P. W. , Bailly X. . ( 2015;). Bacterial genospecies that are not ecologically coherent: population genomics of Rhizobium leguminosarum . Open Biol 5: 140133 [CrossRef] [PubMed].
    [Google Scholar]
  11. Laguerre G. , Nour S. M. , Macheret V. , Sanjuan J. , Drouin P. , Amarger N. . ( 2001;). Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. Microbiology 147: 981–993 [CrossRef] [PubMed].
    [Google Scholar]
  12. Lavin M. , Pennington R. T. , Klitgaard B. B. , Sprent J. I. , de Lima H. C. , Gasson P. E. . ( 2001;). The dalbergioid legumes (Fabaceae): delimitation of a pantropical monophyletic clade. Am J Bot 88: 503–533 [CrossRef] [PubMed].
    [Google Scholar]
  13. Lu J. K. , Dou Y. J. , Zhu Y. J. , Wang S. K. , Sui X. H. , Kang L. H. . ( 2014;). Bradyrhizobium ganzhouense sp. nov., an effective symbiotic bacterium isolated from Acacia melanoxylon R. Br. nodules. Int J Syst Evol Microbiol 64: 1900–1905.[CrossRef]
    [Google Scholar]
  14. Muñoz V. , Ibañez F. , Tonelli M. L. , Valetti L. , Anzuay M. S. , Fabra A. . ( 2011;). Phenotypic and phylogenetic characterization of native peanut Bradyrhizobium isolates obtained from Córdoba, Argentina. Syst Appl Microbiol 34: 446–452 [CrossRef] [PubMed].
    [Google Scholar]
  15. Nandasena K. G. , O'Hara G. W. , Tiwari R. P. , Sezmiş E. , Howieson J. G. . ( 2007;). In situ lateral transfer of symbiosis islands results in rapid evolution of diverse competitive strains of mesorhizobia suboptimal in symbiotic nitrogen fixation on the pasture legume Biserrula pelecinus L. Environ Microbiol 9: 2496–2511 [CrossRef] [PubMed].
    [Google Scholar]
  16. Nzoué A. , Miché L. , Klonowska A. , Laguerre G. , de Lajudie P. , Moulin L. . ( 2009;). Multilocus sequence analysis of bradyrhizobia isolated from Aeschynomene species in Senegal. Syst Appl Microbiol 32: 400–412 [CrossRef] [PubMed].
    [Google Scholar]
  17. Peix A. , Ramírez-Bahena M. H. , Flores-Félix J. D. , Alonso de la Vega , Rivas R. , Mateos P. F. , Igual J. M. , Martínez-Molina E. , Trujillo M. E. , Velázquez E. . ( 2015;). Revision of the taxonomic status of the species Rhizobium lupini and reclassification as Bradyrhizobium lupini comb. nov. Int J Syst Evol Microbiol 65: 1213–1219 [CrossRef] [PubMed].
    [Google Scholar]
  18. Pérez-Ramírez N. O. , Rogel-Hernández M. A. , Wang E. T. , Martínez-Romero E. . ( 1998;). Seeds of Phaseolus vulgaris bean carry Rhizobium etli . FEMS Microbiol Ecol 26: 289–296 [CrossRef].
    [Google Scholar]
  19. Ramírez-Bahena M. H. , Peix A. , Rivas R. , Camacho M. , Rodríguez-Navarro D. N. , Mateos P. F. , Martínez-Molina E. , Willems A. , Velázquez E. . ( 2009;). Bradyrhizobium pachyrhizi sp. nov. and Bradyrhizobium jicamae sp. nov., isolated from effective nodules of Pachyrhizus erosus . Int J Syst Evol Microbiol 59: 1929–1934 [CrossRef] [PubMed].
    [Google Scholar]
  20. Ren C. L. . ( 2008;). Peanut industry in China after the WTO accession. Henan Agriculture 3: 13–15 (in Chinese).
    [Google Scholar]
  21. Rivas R. , Martens M. , de Lajudie P. , Willems A. . ( 2009;). Multilocus sequence analysis of the genus Bradyrhizobium. Syst Appl Microbiol 32: 101–110.[CrossRef]
    [Google Scholar]
  22. Sasser M. . ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids Technical Note 101 Newark, DE: Microbial MIDI Inc;.
    [Google Scholar]
  23. Silva F. V. , De Meyer S. E. , Simões-Araújo J. L. , Barbé T. C. , Xavier G. R. , O'Hara G. , Ardley J. K. , Rumjanek N. G. , Willems A. , Zilli J. E. . ( 2014;). Bradyrhizobium manausense sp. nov., isolated from effective nodules of Vigna unguiculata grown in Brazilian Amazonian rainforest soils. Int J Syst Evol Microbiol 64: 2358–2363 [CrossRef] [PubMed].
    [Google Scholar]
  24. Sullivan J. T. , Ronson C. W. . ( 1998;). Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proc Natl Acad Sci U S A 95: 5145–5149 [CrossRef] [PubMed].
    [Google Scholar]
  25. Tamura K. , Peterson D. , Peterson N. , Stecher G. , Nei M. , Kumar S. . ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  26. Tan Z. Y. , Xu X. D. , Wang E. T. , Gao J. L. , Martinez-Romero E. , Chen W. X. . ( 1997;). Phylogenetic and genetic relationships of Mesorhizobium tianshanense and related rhizobia. Int J Syst Bacteriol 47: 874–879 [CrossRef] [PubMed].
    [Google Scholar]
  27. Tighe S. W. , de Lajudie P. , Dipietro K. , Lindström K. , Nick G. , Jarvis B. D. W. . ( 2000;). Analysis of cellular fatty acids and phenotypic relationships of Agrobacterium, Bradyrhizobium, Mesorhizobium, Rhizobium and Sinorhizobium species using the Sherlock Microbial Identification System. Int J Syst Evol Microbiol 50: 787–801 [CrossRef] [PubMed].
    [Google Scholar]
  28. Urtz B. E. , Elkan G. H. . ( 1996;). Genetic diversity among Bradyrhizobium isolates that effectively nodulate peanut (Arachis hypogaea). Can J Microbiol 42: 1121–1130 [CrossRef] [PubMed].
    [Google Scholar]
  29. Van Rossum D. , Schuurmans F. P. , Gillis M. , Muyotcha A. , Van Verseveld H. W. , Stouthamer A. H. , Boogerd F. C. . ( 1995;). Genetic and phenetic analyses of Bradyrhizobiumstrains nodulating peanut (Arachis hypogaeaL.) roots. Appl Environ Microbiol 61: 1599–1609.
    [Google Scholar]
  30. Versalovic J. , Schneider M. , de Bruijn F. J. , Lupski J. R. . ( 1994;). Genomic finger-printing of bacteria using repetitive sequence-based PCR (rep-PCR). Meth Cell Mol Biol 5: 25–40.
    [Google Scholar]
  31. Vincent J. M. . ( 1970;). A Manual for the Practical Study of the Root Nodule Bacteria Oxford: Blackwell Scientific Publications;.
    [Google Scholar]
  32. Vinuesa P. , León-Barrios M. , Silva C. , Willems A. , Jarabo-Lorenzo A. , Pérez-Galdona R. , Werner D. , Martínez-Romero E. . ( 2005a;). Bradyrhizobium canariense sp. nov., an acid-tolerant endosymbiont that nodulates endemic genistoid legumes (Papilionoideae: Genisteae) from the Canary Islands, along with Bradyrhizobium japonicum bv. genistearum, Bradyrhizobium genospecies alpha and Bradyrhizobium genospecies beta. Int J Syst Evol Microbiol 55: 569–575 [CrossRef] [PubMed].
    [Google Scholar]
  33. Vinuesa P. , Silva C. , Werner D. , Martínez-Romero E. . ( 2005b;). Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. Mol Phylogenet Evol 34: 29–54 [CrossRef] [PubMed].
    [Google Scholar]
  34. Wang R. , Chang Y. L. , Zheng W. T. , Zhang D. , Zhang X. X. , Sui X. H. , Wang E. T. , Hu J. Q. , Zhang L. Y. , Chen W. X. . ( 2013;). Bradyrhizobium arachidis sp. nov., isolated from effective nodules of Arachis hypogaea grown in China. Syst Appl Microbiol 36: 101–105 [CrossRef] [PubMed].
    [Google Scholar]
  35. Yao Z. Y. , Kan F. L. , Wang E. T. , Wei G. H. , Chen W. X. . ( 2002;). Characterization of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. Int J Syst Evol Microbiol 52: 2219–2230.
    [Google Scholar]
  36. Zhang X. , Nick G. , Kaijalainen S. , Terefework Z. , Paulin L. , Tighe S. W. , Graham P. H. , Lindström K. . ( 1999;). Phylogeny and diversity of Bradyrhizobium strains isolated from the root nodules of peanut (Arachis hypogaea) in Sichuan, China. Syst Appl Microbiol 22: 378–386 [CrossRef] [PubMed].
    [Google Scholar]
  37. Zilli J. E. , Baraúna A. C. , da Silva K. , De Meyer S. E. , Farias E. N. C. , Kaminski P. E. , da Costa I. B. , Ardley J. K. , Willems A. , other authors . ( 2014;). Bradyrhizobium neotropicale sp. nov., isolated from effective nodules of Centrolobium paraense . Int J Syst Evol Microbiol 64: 3950–3957 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000629
Loading
/content/journal/ijsem/10.1099/ijsem.0.000629
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error