1887

Abstract

A polyphasic taxonomic study was undertaken to establish the status of a novel bacterium, designated strain WHSC-8, which was isolated from soil of Hengshui Lake Wetland Reserve in Hebei province, northern China. Colonies of this strain were yellow and cells were rod-shaped, polar-flagellated and obligately aerobic, exhibiting negative Gram reaction. The strain was able to grow at 0–1 % (w/v) NaCl, pH 5–10 and 20–35 °C, with optimal growth occurring at pH 7.0 and 28 °C without NaCl. Chemotaxonomic data revealed that strain WHSC-8 possesses ubiquinone Q-10 as the predominant respiratory quinone, Cω7, C and summed feature 3 (Cω7 and/or iso-C 2-OH) as the major fatty acids, and -homospermidine as the major polyamine. -specific sphingoglycolipid was detected in the polar lipid patterns. The G+C content of the genomic DNA was 68.7 mol%. All of the above characters corroborated the assignment of the novel strain to the genus . Strain WHSC-8 shared less than 97.0 % 16S rRNA gene sequence similarity with the type strains of other species of the genus , except for DSM 10564 (97.5 %). The low DNA–DNA relatedness value and distinct phenotypic and chemotaxonomic characteristics distinguished strain WHSC-8 from closely related species of the genus . Therefore, strain WHSC-8 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is WHSC-8 ( = KCTC 42455 = CCTCC AB 2015265).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000626
2015-12-01
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/12/4644.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000626&mimeType=html&fmt=ahah

References

  1. Buck J. D. ( 1982;). Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44 992993 [PubMed].
    [Google Scholar]
  2. Busse H.-J., Kampfer P., Denner E.-B. ( 1999;). Chemotaxonomic characterisation of Sphingomonas. J Ind Microbiol Biotechnol 23 242251. [CrossRef]
    [Google Scholar]
  3. Busse H.-J., Denner E. B., Buczolits S., Salkinoja-Salonen M., Bennasar A., Kämpfer P. ( 2003;). Sphingomonas aurantiaca sp. nov., Sphingomonas aerolata sp. nov. and Sphingomonas faeni sp. nov., air- and dustborne and Antarctic, orange-pigmented, psychrotolerant bacteria, and emended description of the genus Sphingomonas . Int J Syst Evol Microbiol 53 12531260 [View Article] [PubMed].
    [Google Scholar]
  4. Chen H., Jogler M., Rohde M., Klenk H. P., Busse H. J., Tindall B. J., Spröer C., Overmann J. ( 2012;). Reclassification and emended description of Caulobacter leidyi as Sphingomonas leidyi comb. nov., and emendation of the genus Sphingomonas . Int J Syst Evol Microbiol 62 28352843 [View Article] [PubMed].
    [Google Scholar]
  5. Collins M. D., Jones D. ( 1980;). Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4-diaminobutyric acid. J Appl Bacteriol 48 459470 [View Article].
    [Google Scholar]
  6. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100 221230 [View Article] [PubMed].
    [Google Scholar]
  7. Felsenstein J. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17 368376 [View Article] [PubMed].
    [Google Scholar]
  8. Felsenstein J. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39 783791 [View Article].
    [Google Scholar]
  9. Fitch W. M. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20 406416 [View Article].
    [Google Scholar]
  10. Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O. ( 2010;). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59 307321 [View Article] [PubMed].
    [Google Scholar]
  11. Hamana K., Takeuchi M. ( 1998;). Polyamine profiles as chemotaxonomic marker within alpha, beta, gamma, delta, and epsilon subclasses of class Proteobacteria: distribution of 2-hydroxyputrescine and homospermidine. Microbiol Cult Coll 14 114.
    [Google Scholar]
  12. Hamana K., Sakane T., Yokota A. ( 1994;). Polyamine analysis of the genera Aquaspirillum, Magnetospirillum, Oceanospirillum and Spirillum . J Gen Appl Microbiol 40 7582 [View Article].
    [Google Scholar]
  13. Hendrickson D. A., Krenz M. M. ( 1991;). Reagents and stains. . In Manual of Clinical Microbiology , 5th edn., pp. 12891314. Edited by Balows A., Hausler W. J. J., Herrmann K. L., Isenberg H. D., Shadomy H. J. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  14. Huß V. A. R., Festl H., Schleifer K. H. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4 184192 [View Article] [PubMed].
    [Google Scholar]
  15. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62 716721 [View Article] [PubMed].
    [Google Scholar]
  16. Lee J. S., Shin Y. K., Yoon J. H., Takeuchi M., Pyun Y. R., Park Y. H. ( 2001;). Sphingomonas aquatilis sp. nov., Sphingomonas koreensis sp. nov., and Sphingomonas taejonensis sp. nov., yellow-pigmented bacteria isolated from natural mineral water. Int J Syst Evol Microbiol 51 14911498 [View Article] [PubMed].
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W. B. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. Int J Syst Bacteriol 39 159167 [View Article].
    [Google Scholar]
  18. MIDI ( 1999). Sherlock Microbial Identification System Operating Manual, version 3.0 Newark, DE: MIDI, Inc;.
    [Google Scholar]
  19. Minnikin D. E., Collins M. D., Goodfellow M. ( 1979;). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47 8795 [View Article].
    [Google Scholar]
  20. Ohta H., Hattori R., Ushiba Y., Mitsui H., Ito M., Watanabe H., Tonosaki A., Hattori T. ( 2004;). Sphingomonas oligophenolica sp. nov., a halo- and organo-sensitive oligotrophic bacterium from paddy soil that degrades phenolic acids at low concentrations. Int J Syst Evol Microbiol 54 21852190 [View Article] [PubMed].
    [Google Scholar]
  21. Reddy G. S., Garcia-Pichel F. ( 2007;). Sphingomonas mucosissima sp. nov. and Sphingomonas desiccabilis sp. nov., from biological soil crusts in the Colorado Plateau, USA. Int J Syst Evol Microbiol 57 10281034 [View Article] [PubMed].
    [Google Scholar]
  22. Roh S. W., Kim K. H., Nam Y.-D., Chang H.-W., Kim M.-S., Oh H.-M., Bae J.-W. ( 2009;). Sphingomonas aestuarii sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 59 13591363 [View Article] [PubMed].
    [Google Scholar]
  23. Saitou N., Nei M. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4 406425 [PubMed].
    [Google Scholar]
  24. Takeuchi M., Kawai F., Shimada Y., Yokota A. ( 1993;). Taxonomic study of polyethylene glycol-utilizing bacteria: emended description of the genus Sphingomonas and new descriptions of Sphingomonas macrogoltabidus sp. nov., Sphingomonas sanguis sp. nov. and Sphingomonas terrae sp. nov. Syst Appl Microbiol 16 227238 [View Article].
    [Google Scholar]
  25. Takeuchi M., Sakane T., Yanagi M., Yamasato K., Hamana K., Yokota A. ( 1995;). Taxonomic study of bacteria isolated from plants: proposal of Sphingomonas rosa sp. nov., Sphingomonas pruni sp. nov., Sphingomonas asaccharolytica sp. nov., and Sphingomonas mali sp. nov. Int J Syst Bacteriol 45 334341. [CrossRef]
    [Google Scholar]
  26. Takeuchi M., Hamana K., Hiraishi A. ( 2001;). Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51 14051417 [View Article] [PubMed].
    [Google Scholar]
  27. Talà A., Lenucci M., Gaballo A., Durante M., Tredici S. M., Debowles D. A., Pizzolante G., Marcuccio C., Carata E., other authors. ( 2013;). Sphingomonas cynarae sp. nov., a proteobacterium that produces an unusual type of sphingan. Int J Syst Evol Microbiol 63 7279 [View Article] [PubMed].
    [Google Scholar]
  28. Tamaoka J., Katayama-Fujimura Y., Kuraishi H. ( 1983;). Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J Appl Bacteriol 54 3136 [View Article].
    [Google Scholar]
  29. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28 27312739 [View Article] [PubMed].
    [Google Scholar]
  30. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25 48764882 [View Article] [PubMed].
    [Google Scholar]
  31. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E., other authors. ( 1987;). International Committee on Bacterial Systematics. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37 463464 [View Article].
    [Google Scholar]
  32. Xie C. H., Yokota A. ( 2006;). Sphingomonas azotifigens sp. nov., a nitrogen-fixing bacterium isolated from the roots of Oryza sativa . Int J Syst Evol Microbiol 56 889893 [View Article] [PubMed].
    [Google Scholar]
  33. Yabuuchi E., Yano I., Oyaizu H., Hashimoto Y., Ezaki T., Yamamoto H. ( 1990;). Proposals of Sphingomonas paucimobilis gen. nov. and comb. nov., Sphingomonas parapaucimobilis sp. nov., Sphingomonas yanoikuyae sp. nov., Sphingomonas adhaesiva sp. nov., Sphingomonas capsulata comb. nov., and two genospecies of the genus Sphingomonas . Microbiol Immunol 34 99119 [View Article] [PubMed].
    [Google Scholar]
  34. Yabuuchi E., Kosako Y., Naka T., Suzuki S., Yano I. ( 1999;). Proposal of Sphingomonas suberifaciens (van Bruggen, Jochimsen and Brown 1990) comb. nov., Sphingomonas natatoria (Sly 1985) comb. nov., Sphingomonas ursincola (Yurkov et al. 1997) comb. nov., and emendation of the genus Sphingomonas . Microbiol Immunol 43 339349 [View Article] [PubMed].
    [Google Scholar]
  35. Yabuuchi E., Kosako Y., Fujiwara N., Naka T., Matsunaga I., Ogura H., Kobayashi K. ( 2002;). Emendation of the genus Sphingomonas Yabuuchi et al. 1990 and junior objective synonymy of the species of three genera, Sphingobium, Novosphingobium and Sphingopyxis, in conjunction with Blastomonas ursincola . Int J Syst Evol Microbiol 52 14851496 [PubMed].
    [Google Scholar]
  36. Yang D. C., Im W. T., Kim M. K., Ohta H., Lee S. T. ( 2006;). Sphingomonas soli sp. nov., a β-glucosidase-producing bacterium in the family Sphingomonadaceae in the α-4 subgroup of the Proteobacteria . Int J Syst Evol Microbiol 56 703707 [View Article] [PubMed].
    [Google Scholar]
  37. Yoon J. H., Lee M. H., Kang S. J., Lee S. Y., Oh T. K. ( 2006;). Sphingomonas dokdonensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 56 21652169 [View Article] [PubMed].
    [Google Scholar]
/content/journal/ijsem/10.1099/ijsem.0.000626
Loading
/content/journal/ijsem/10.1099/ijsem.0.000626
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error