1887

Abstract

Five isolates of non-pigmented, rapidly growing mycobacteria were isolated from three patients and, in an earlier study, from zebrafish. Phenotypic and molecular tests confirmed that these isolates belong to the group, but they could not be confidently assigned to any known species of this group. Phenotypic analysis and biochemical tests were not helpful for distinguishing these isolates from other members of the group. The isolates presented higher drug resistance in comparison with other members of the group, showing susceptibility only to clarithromycin. The five isolates showed a unique PCR restriction analysis pattern of the gene, 100 % similarity in 16S rRNA gene and sequences and 1–2 nt differences in and internal transcribed spacer (ITS) sequences. Phylogenetic analysis of a concatenated dataset including 16S rRNA gene, , and sequences from type strains of more closely related species placed the five isolates together, as a distinct lineage from previously described species, suggesting a sister relationship to a group consisting of , , and . DNA–DNA hybridization values >70 % confirmed that the five isolates belong to the same species, while values < 70 % between one of the isolates and the type strains of and confirmed that the isolates belong to a distinct species. The polyphasic characterization of these isolates, supported by DNA–DNA hybridization results, demonstrated that they share characteristics with members, but constitute a different species, for which the name sp. nov. is proposed. The type strain is EPM 10906 ( = CCUG 66554 = LMG 28586 = INCQS 0733).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000590
2015-12-01
2019-09-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/12/4403.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000590&mimeType=html&fmt=ahah

References

  1. Adékambi T., Reynaud-Gaubert M., Greub G., Gevaudan M. J., La Scola B., Raoult D., Drancourt M.. ( 2004;). Amoebal coculture of Mycobacterium massiliense sp. nov. from the sputum of a patient with hemoptoic pneumonia. J Clin Microbiol 42: 5493–5501 [CrossRef] [PubMed].
    [Google Scholar]
  2. Adékambi T., Berger P., Raoult D., Drancourt M.. ( 2006a;). rpoB gene sequence-based characterization of emerging non-tuberculous mycobacteria with descriptions of Mycobacterium bolletii sp. nov., Mycobacterium phocaicum sp. nov. and Mycobacterium aubagnense sp. nov. Int J Syst Evol Microbiol 56: 133–143 [CrossRef] [PubMed].
    [Google Scholar]
  3. Adékambi J., Reynaud-Gaubert M., Greub G., Gevaudan M. J., La Scola B., Raoult D., Drancourt M.. ( 2006b;). Mycobacterium massiliense sp. nov. In List of New Names and New Combinations Previously Effectively, but not Validly, Published, Validation List 111. Int J Syst Evol Microbiol 56: 2025–2027 [CrossRef] [PubMed].
    [Google Scholar]
  4. Alvarenga L., Freitas D., Hofling-Lima A. L., Belfort R. Jr, Sampaio J., Sousa L., Yu M., Mannis M.. ( 2002;). Infectious post-LASIK crystalline keratopathy caused by nontuberculous mycobacteria. Cornea 21: 426–429 [CrossRef] [PubMed].
    [Google Scholar]
  5. Chang C. T., Whipps C. M.. ( 2015;). Activity of antibiotics against Mycobacterium species commonly found in laboratory zebrafish. J Aquat Anim Health 27: 88–95 [CrossRef] [PubMed].
    [Google Scholar]
  6. CLSI ( 2011;). Susceptibility Testing of Mycobacteria, Nocardiae, and Other Aerobic Actinomycetes; Approved Standard, CLSI document M24-A2 , 2nd edn. Wayne, PA: Clinical and Laboratory Standards Institute;.
    [Google Scholar]
  7. Devulder G., Pérouse de Montclos M., Flandrois J. P.. ( 2005;). A multigene approach to phylogenetic analysis using the genus Mycobacterium as a model. Int J Syst Evol Microbiol 55: 293–302 [CrossRef] [PubMed].
    [Google Scholar]
  8. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224–229 [CrossRef].
    [Google Scholar]
  9. Guindon S., Gascuel O.. ( 2003;). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52: 696–704 [CrossRef] [PubMed].
    [Google Scholar]
  10. Kent P. T., Kubica G. P.. ( 1985;). Public Health Mycobacteriology. A Guide for the Level III Laboratory Atlanta: Centers for Disease Control;.
    [Google Scholar]
  11. Kent M. L., Whipps C. M., Matthews J. L., Florio D., Watral V., Bishop-Stewart J. K., Poort M., Bermudez L.. ( 2004;). Mycobacteriosis in zebrafish (Danio rerio) research facilities. Comp Biochem Physiol C: Toxicol Pharmacol 138: 383–390 [CrossRef] [PubMed].
    [Google Scholar]
  12. Kusunoki S., Ezaki T.. ( 1992;). Proposal of Mycobacterium peregrinum sp. Nov., nom. rev., and elevation of Mycobacterium chelonae subsp. abscessus (Kubica et al.) to species status: Mycobacterium abscessus comb. nov. Int J Syst Bacteriol 42: 240–245 [CrossRef] [PubMed].
    [Google Scholar]
  13. Leão S. C., Martin A., Mejia G. I., Palomino J. C., Robledo J., Telles M. A. S., Portaels F.. ( 2004;). Practical Handbook for the Phenotypic and Genotypic Identification of Mycobacteria Brugges: Vanden BROELLE;.
    [Google Scholar]
  14. Leão S. C., Tortoli E., Viana-Niero C., Ueki S. Y., Lima K. V., Lopes M. L., Yubero J., Menendez M. C., Garcia M. J.. ( 2009;). Characterization of mycobacteria from a major Brazilian outbreak suggests that revision of the taxonomic status of members of the Mycobacterium chelonae-M. abscessus group is needed. J Clin Microbiol 47: 2691–2698 [CrossRef] [PubMed].
    [Google Scholar]
  15. Leão S. C., Viana-Niero C., Matsumoto C. K., Lima K. V., Lopes M. L., Palaci M., Hadad D. J., Vinhas S., Duarte R. S., other authors. ( 2010;). Epidemic of surgical-site infections by a single clone of rapidly growing mycobacteria in Brazil. Future Microbiol 5: 971–980 [CrossRef] [PubMed].
    [Google Scholar]
  16. Leão S. C., Tortoli E., Euzéby J. P., Garcia M. J.. ( 2011;). Proposal that Mycobacterium massiliense and Mycobacterium bolletii be united and reclassified as Mycobacterium abscessus subsp. bolletii comb. nov., designation of Mycobacterium abscessus subsp. abscessus subsp. nov. and emended description of Mycobacterium abscessus. Int J Syst Evol Microbiol 61: 2311–2313 [CrossRef] [PubMed].
    [Google Scholar]
  17. Marmur J.. ( 1961;). A procedure the for isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3: 208–218 [CrossRef].
    [Google Scholar]
  18. Matsumoto C. K., Chimara E., Bombarda S., Duarte R. S., Leão S. C.. ( 2011;). Diversity of pulsed-field gel electrophoresis patterns of Mycobacterium abscessus type 2 clinical isolates. J Clin Microbiol 49: 62–68 [CrossRef] [PubMed].
    [Google Scholar]
  19. Mesbah M., Whitman W. B.. ( 1989;). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr A 479: 297–306 [CrossRef] [PubMed].
    [Google Scholar]
  20. Nogueira C. L., Simmon K. E., Chimara E., Cnockaert M., Palomino J. C., Martin A., Vandamme P., Brown-Elliott B. A., Wallace R. J. Jr, other authors. ( 2015;). Mycobacterium franklinii sp. nov., a species closely related to members of the Mycobacterium chelonae-Mycobacterium abscessus group. Int J Syst Evol Microbiol 65: 2148–2153 [CrossRef].
    [Google Scholar]
  21. Pitcher D. G., Saunders N. A., Owen R. J.. ( 1989;). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8: 151–156 [CrossRef].
    [Google Scholar]
  22. Roth A., Reischl U., Streubel A., Naumann L., Kroppenstedt R. M., Habicht M., Fischer M., Mauch H.. ( 2000;). Novel diagnostic algorithm for identification of mycobacteria using genus-specific amplification of the 16S-23S rRNA gene spacer and restriction endonucleases. J Clin Microbiol 38: 1094–1104 [PubMed].
    [Google Scholar]
  23. Sampaio J. L., Viana-Niero C., de Freitas D., Höfling-Lima A. L., Leão S. C.. ( 2006;). Enterobacterial repetitive intergenic consensus PCR is a useful tool for typing Mycobacterium chelonae and Mycobacterium abscessus isolates. Diagn Microbiol Infect Dis 55: 107–118 [CrossRef] [PubMed].
    [Google Scholar]
  24. Simmon K. E., Brown-Elliott B. A., Ridge P. G., Durtschi J. D., Mann L. B., Slechta E. S., Steigerwalt A. G., Moser B. D., Whitney A. M., other authors. ( 2011;). Mycobacterium chelonae-abscessus complex associated with sinopulmonary disease, Northeastern USA. Emerg Infect Dis 17: 1692–1700 [CrossRef] [PubMed].
    [Google Scholar]
  25. Telenti A., Marchesi F., Balz M., Bally F., Böttger E. C., Bodmer T.. ( 1993;). Rapid identification of mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. In J Clin Microbiol 31: 175–178.
    [Google Scholar]
  26. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  27. Tortoli E.. ( 2003;). Impact of genotypic studies on mycobacterial taxonomy: the new mycobacteria of the 1990s. Clin Microbiol Rev 16: 319–354 [CrossRef] [PubMed].
    [Google Scholar]
  28. Tortoli E.. ( 2009;). Clinical manifestations of nontuberculous mycobacteria infections. Clin Microbiol Infect 15: 906–910 [CrossRef] [PubMed].
    [Google Scholar]
  29. Tsukamura M.. ( 1984;). Identification of Mycobacteria Aichi: Mycobacteriosis Research Laboratory of the National Chubu Hospital;.
    [Google Scholar]
  30. Wallace R. J. Jr, Swenson J. M., Silcox V. A., Good R. C., Tschen J. A., Stone M. S.. ( 1983;). Spectrum of disease due to rapidly growing mycobacteria. Rev Infect Dis 5: 657–679 [CrossRef] [PubMed].
    [Google Scholar]
  31. Whipps C. M., Butler W. R., Pourahmad F., Watral V. G., Kent M. L.. ( 2007;). Molecular systematics support the revival of Mycobacterium salmoniphilum (ex Ross 1960) sp. nov., nom. rev., a species closely related to Mycobacterium chelonae. Int J Syst Evol Microbiol 57: 2525–2531 [CrossRef] [PubMed].
    [Google Scholar]
  32. Wilson R. W., Steingrube V. A., Böttger E. C., Springer B., Brown-Elliott B. A., Vincent V., Jost K. C. Jr, Zhang Y., Garcia M. J., other authors. ( 2001;). Mycobacterium immunogenum sp. nov., a novel species related to Mycobacterium abscessus and associated with clinical disease, pseudo-outbreaks and contaminated metalworking fluids: an international cooperative study on mycobacterial taxonomy. Int J Syst Evol Microbiol 51: 1751–1764 [CrossRef] [PubMed].
    [Google Scholar]
  33. Zhang Y. Y., Li Y. B., Huang M. X., Zhao X. Q., Zhang L. S., Liu W. E., Wan K. L.. ( 2013;). Novel species including Mycobacterium fukienense sp. is found from tuberculosis patients in Fujian Province, China, using phylogenetic analysis of Mycobacterium chelonae/abscessus complex. Biomed Environ Sci 26: 894–901 [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000590
Loading
/content/journal/ijsem/10.1099/ijsem.0.000590
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error