1887

Abstract

Thirteen novel Gram-stain-positive bacteria were isolated from various samples collected from mangrove forests in Japan, and their taxonomic positions were investigated by a polyphasic approach. Phylogenetic analyses based on 16S rRNA gene sequence comparisons showed that the 13 isolates formed a single clade with HI08-69, with a similarity range of 97.6–99.5 %. The peptidoglycan of the isolates was of the A4α type with an interpeptide bridge comprising Ser–Glu and an -Ser residue at position 1 of the peptide subunit. The predominant menaquinone was demethylmenaquinone DMK-9(H) and the major fatty acid was anteiso-C. These chemotaxonomic characteristics corresponded to those of the genus . On the basis of the phenotypic and phylogenetic data, along with average nucleotide identity values among the isolates, we concluded that the 13 isolates should be assigned to the following nine novel species of the genus : sp. nov. (type strain HI12-104 = NBRC 109392 = DSM 28144), sp. nov. (type strain HI12-45 = NBRC 109391 = DSM 28150), sp. nov. (type strain HI12-44 = NBRC 109390 = DSM 28149), sp. nov. (type strain HI12-143 = NBRC 109399 = DSM 28146), sp. nov. (type strain HI12-123 = NBRC 109395 = DSM 28147), sp. nov. (type strain HI12-111 = NBRC 109393 = DSM 28148), sp. nov. (type strain HI12-135 = NBRC 109397 = DSM 28152), sp. nov. (type strain HI12-122 = NBRC 109394 = DSM 28151) and sp. nov. (type strain HI12-128 = NBRC 109396 = DSM 28145). In addition, an emended description of the genus is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000587
2015-12-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/12/4394.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000587&mimeType=html&fmt=ahah

References

  1. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  2. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  3. Fitch W. M.. ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  4. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M.. ( 2007;). DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57: 81–91 [CrossRef] [PubMed].
    [Google Scholar]
  5. Hamada M., Tamura T., Yamamura H., Suzuki K., Hayakawa M.. ( 2012a;). Lysinimicrobium mangrovi gen. nov., sp. nov., an actinobacterium isolated from the rhizosphere of a mangrove. Int J Syst Evol Microbiol 62: 1731–1735 [CrossRef] [PubMed].
    [Google Scholar]
  6. Hamada M., Yamamura H., Komukai C., Tamura T., Suzuki K., Hayakawa M.. ( 2012b;). Luteimicrobium album sp. nov., a novel actinobacterium isolated from a lichen collected in Japan, and emended description of the genus Luteimicrobium. J Antibiot (Tokyo) 65: 427–431 [CrossRef] [PubMed].
    [Google Scholar]
  7. Hamada M., Ichikawa N., Oguchi A., Fujita N.. ( 2014;). Draft genome sequence of Lysinimicrobium mangrovi NBRC 105856T, isolated from the rhizosphere of a mangrove. Genome Announc 2: e01131–e01e14 [CrossRef] [PubMed].
    [Google Scholar]
  8. Kim O. S., Cho Y. J., Lee K., Yoon S. H., Kim M., Na H., Park S. C., Jeon Y. S., Lee J. H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  9. Richter M., Rosselló-Móra R.. ( 2009;). Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106: 19126–19131 [CrossRef] [PubMed].
    [Google Scholar]
  10. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  11. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  12. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36: 407–477 [PubMed].
    [Google Scholar]
  13. Schumann P.. ( 2011;). Peptidoglycan structure. Methods Microbiol 38: 101–129 [CrossRef].
    [Google Scholar]
  14. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  15. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882 [CrossRef] [PubMed].
    [Google Scholar]
  16. Ue H., Matsuo Y., Kasai H., Yokota A.. ( 2011;). Demequina globuliformis sp. nov., Demequina oxidasica sp. nov. and Demequina aurantiaca sp. nov., actinobacteria isolated from marine environments, and proposal of Demequinaceae fam. nov. Int J Syst Evol Microbiol 61: 1322–1329 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000587
Loading
/content/journal/ijsem/10.1099/ijsem.0.000587
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error