1887

Abstract

Strain CCM 4446, with notable biodegradation capabilities, was investigated in this study in order to elucidate its taxonomic position. Chemotaxonomic analyses of quinones, polar lipids, mycolic acids, polyamines and the diamino acid of the cell-wall peptidoglycan corresponded with characteristics of the genus . Phylogenetic analysis, based on the 16S rRNA gene sequence, assigned strain CCM 4446 to the genus and placed it in the 16S rRNA gene clade. Further analysis of and gene sequences, automated ribotyping with RI restriction endonuclease, whole-cell protein profiling, DNA–DNA hybridization and extensive biotyping enabled differentiation of strain CCM 4446 from all phylogenetically closely related species, i.e., and The results obtained show that the strain investigated represents a novel species within the genus , for which the name sp. nov., is proposed. The type strain is CCM 4446 ( = LMG 28633).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000584
2015-12-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/12/4381.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000584&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.-J.. ( 1996;). Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47: 39–52 [CrossRef].
    [Google Scholar]
  2. Atlas R. M.. ( 2010;). Handbook of Microbiological Media, 4th edn. New York: CRC Press, Taylor & Francis Group; [CrossRef].
    [Google Scholar]
  3. Bell K. S., Philp J. C., Aw D.W.J., Christofi N.. ( 1998;). The genus Rhodococcus. J Appl Microbiol 85: 195–210 [CrossRef] [PubMed].
    [Google Scholar]
  4. Cleenwerck I., Vandemeulebroecke K., Janssens D., Swings J.. ( 2002;). Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 52: 1551–1558 [PubMed].
    [Google Scholar]
  5. Damborský J., Koča J.. ( 1999;). Analysis of the reaction mechanism and substrate specificity of haloalkane dehalogenases by sequential and structural comparisons. Protein Eng 12: 989–998 [CrossRef] [PubMed].
    [Google Scholar]
  6. Damborský J., Nyandoroh M. G., Ne˘mec M., Holoubek I., Bull A. T., Hardman D. J.. ( 1997;). Some biochemical properties and the classification of a range of bacterial haloalkane dehalogenases. Biotechnol Appl Biochem 26: 19–25 [PubMed].
    [Google Scholar]
  7. de Carvalho C. C., Costa S. S., Fernandes P., Couto I., Viveiros M.. ( 2014;). Membrane transport systems and the biodegradation potential and pathogenicity of genus Rhodococcus. Front Physiol 5: 133 [CrossRef] [PubMed].
    [Google Scholar]
  8. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224–229 [CrossRef].
    [Google Scholar]
  9. Frischmann A., Knoll A., Hilbert F., Zasada A. A., Kämpfer P., Busse H.-J.. ( 2012;). Corynebacterium epidermidicanis sp. nov., isolated from skin of a dog. Int J Syst Evol Microbiol 62: 2194–2200 [CrossRef] [PubMed].
    [Google Scholar]
  10. Gevers D., Huys G., Swings J.. ( 2001;). Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol Lett 205: 31–36 [CrossRef] [PubMed].
    [Google Scholar]
  11. Goris J., Suzuki K., De Vos P., Nakase T., Kersters K.. ( 1998;). Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44: 1148–1153 [CrossRef].
    [Google Scholar]
  12. Janáková I., Vojtková H.. ( 2012;). Application of flotation and biodegradation to eliminate persistent organic pollutants in the influent stream of Cerny Prikop. . In Microbes in Applied Research, pp. 28–32. Edited by Mendez-Vilas A.. Singapore: World Scientific Publishing; [CrossRef].
    [Google Scholar]
  13. Jones A. L., Goodfellow M.. ( 2012;). Genus IV. Rhodococcus (Zopf 1891) emend. Goodfellow, Alderson and Chun 1998a. . In Bergey's Manual of Systematic Bacteriology, The Actinobacteria, Part Avol. 5, pp. 437–464. Edited by Whitman W., Goodfellow M., Kämpfer P., Busse H.-J., Trujillo M. E., Ludwig W., Suzuki K.-i., Parte A.. New York: Springer;.
    [Google Scholar]
  14. Kämpfer P., Dott W., Martin K., Glaeser S. P.. ( 2014;). Rhodococcus defluvii sp. nov., isolated from wastewater of a bioreactor and formal proposal to reclassify [Corynebacterium hoagii] and Rhodococcus equi as Rhodococcus hoagii comb. nov. Int J Syst Evol Microbiol 64: 755–761 [CrossRef] [PubMed].
    [Google Scholar]
  15. Kašáková H., Vojtková H., Jablonka R.. ( 2012;). Biodegradation of oil sludge using bacterial organisms. . In 12th International Multidisciplinary Scientific GeoConference SGEM SGEM Conference Proceedings, vol. 2. Sofia STEF92 Technology, pp. 435–440. Albena, Bulgaria: IJSEM.
    [Google Scholar]
  16. Klatte S., Kroppenstedt R. M., Rainey F. A.. ( 1994;). Rhodococcus opacus sp. nov., an unusual nutritionally versatile Rhodococcus species. Syst Appl Microbiol 17: 355–360 [CrossRef].
    [Google Scholar]
  17. Lang S., Philp J. C.. ( 1998;). Surface-active lipids in rhodococci. Antonie van Leeuwenhoek 74: 59–70 [CrossRef] [PubMed].
    [Google Scholar]
  18. MacFaddin J. F.. ( 2000;). Biochemical Tests for Identification of Medical Bacteria, 3rd edn. USA: Lippincott Williams & Wilkins;.
    [Google Scholar]
  19. Martínková L., Uhnáková B., Pátek M., Nešvera J., Křen V.. ( 2009;). Biodegradation potential of the genus Rhodococcus. Environ Int 35: 162–177 [CrossRef] [PubMed].
    [Google Scholar]
  20. Mesbah M., Whitman W. B.. ( 1989;). Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J Chromatogr A 479: 297–306 [CrossRef] [PubMed].
    [Google Scholar]
  21. Poelarends G. J., Zandstra M., Bosma T., Kulakov L. A., Larkin M. J., Marchesi J. R., Weightman A. J., Janssen D. B.. ( 2000;). Haloalkane-utilizing Rhodococcus strains isolated from geographically distinct locations possess a highly conserved gene cluster encoding haloalkane catabolism. J Bacteriol 182: 2725–2731 [CrossRef] [PubMed].
    [Google Scholar]
  22. Roach P.C.J., Ramsden D. K., Hughes J., Williams P.. ( 2003;). Development of a conductimetric biosensor using immobilised Rhodococcus ruber whole cells for the detection and quantification of acrylonitrile. Biosens Bioelectron 19: 73–78 [CrossRef] [PubMed].
    [Google Scholar]
  23. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  24. Scholtz R., Leisinger T., Suter F., Cook A. M.. ( 1987a;). Characterization of 1-chlorohexane halidohydrolase, a dehalogenase of wide substrate range from an Arthrobacter sp. J Bacteriol 169: 5016–5021 [PubMed].
    [Google Scholar]
  25. Scholtz R., Schmuckle A., Cook A. M., Leisinger T.. ( 1987b;). Degradation of eighteen 1-monohaloalkanes by Arthrobacter sp. strain HA1. J Gen Microbiol 133: 267–274.
    [Google Scholar]
  26. Scholtz R., Messi F., Leisinger T., Cook A. M.. ( 1988;). Three dehalogenases and physiological restraints in the biodegradation of haloalkanes by Arthrobacter sp. strain HA1. Appl Environ Microbiol 54: 3034–3038 [PubMed].
    [Google Scholar]
  27. Schumann P.. ( 2011;). Peptidoglycan structure. . In Taxonomy of Prokaryotes, Methods in Microbiologyvol. 38, pp. 101–129. Edited by Rainey F., Oren A.. London: Academic Press; [CrossRef].
    [Google Scholar]
  28. Stolz A., Busse H.-J., Kämpfer P.. ( 2007;). Pseudomonas knackmussii sp. nov. Int J Syst Evol Microbiol 57: 572–576 [CrossRef] [PubMed].
    [Google Scholar]
  29. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  30. Táncsics A., Benedek T., Farkas M., Máthé I., Márialigeti K., Szoboszlay S., Kukolya J., Kriszt B.. ( 2014;). Sequence analysis of 16S rRNA, gyrB and catA genes and DNA-DNA hybridization reveal that Rhodococcus jialingiae is a later synonym of Rhodococcus qingshengii. Int J Syst Evol Microbiol 64: 298–301 [CrossRef] [PubMed].
    [Google Scholar]
  31. Tindall B. J.. ( 1990a;). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66: 199–202 [CrossRef].
    [Google Scholar]
  32. Tindall B. J.. ( 1990b;). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13: 128–130 [CrossRef].
    [Google Scholar]
  33. Vojtková H., Mašlaňová I., Sedláček I., Švanová P., Janulková R.. ( 2012;). Removal of heavy metals from wastewater by a Rhodococcus sp. bacterial strain. . In 12th International Multidisciplinary Scientific GeoConference SGEM SGEM Conference Proceedings, vol. 5. Sofia STEF92 Technology. pp. 685–691. Albena, Bulgaria.
    [Google Scholar]
  34. Warhurst A. M., Fewson C. A.. ( 1994;). Biotransformations catalyzed by the genus Rhodococcus. Crit Rev Biotechnol 14: 29–73 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000584
Loading
/content/journal/ijsem/10.1099/ijsem.0.000584
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error