1887

Abstract

An anaerobic, saccharolytic bacterial strain designated GLS2 was isolated from aggregates of the psychrotolerant archaeon strain JL01 isolated from arctic permafrost. Bacterial cells were non-motile, spherical, ovoid and annular with diameter 0.2–4 μm. They were chemoorganoheterotrophs using a wide range of mono-, di- and trisaccharides as carbon and energy sources. The novel isolate required yeast extract and vitamins for growth. The bacteria exhibited resistance to a number of β-lactam antibiotics, rifampicin, streptomycin and vancomycin. Optimum growth was observed between 30 and 34 °C, at pH 6.8–7.5 and with 1–2 g NaCl l. Isolate GLS2 was a strict anaerobe but it tolerated oxygen exposure. On the basis of 16S rRNA gene sequence similarity, strain GLS2 was shown to belong to the genus within the family . Its closest relatives were Buddy (99.3 % 16S rRNA gene sequence similarity) and Grapes (95.4 % similarity). The G+C content of DNA was 47.2 mol%. The level of DNA–DNA hybridization between strains GLS2 and Buddy was 34.7 ± 8.8 %. Major polar lipids were phosphoglycolipids, phospholipids and glycolipids; major fatty acids were C, C, C 3-OH, C dimethyl acetal (DMA), C and C DMA; respiratory quinones were not detected. The results of DNA–DNA hybridization, physiological and biochemical tests demonstrated genotypic and phenotypic differentiation of strain GLS2 from the four species of the genus with validly published names that allowed its separation into a new lineage at the species level. Strain GLS2 therefore represents a novel species, for which the name sp. nov. is proposed, with the type strain GLS2 ( = DSM 26261 = VKM B-2742).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000575
2015-12-01
2019-08-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/12/4315.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000575&mimeType=html&fmt=ahah

References

  1. Abt B. , Han C. , Scheuner C. , Lu M. , Lapidus A. , Nolan M. , Lucas S. , Hammon N. , Deshpande S. , other authors . ( 2012;). Complete genome sequence of the termite hindgut bacterium Spirochaeta coccoides type strain (SPN1T), reclassification in the genus Sphaerochaeta as Sphaerochaeta coccoides comb. nov. and emendations of the family Spirochaetaceae and the genus Sphaerochaeta . Stand Genomic Sci 6: 194–209 [CrossRef] [PubMed].
    [Google Scholar]
  2. Altschul S. F. , Gish W. , Miller W. , Myers E. W. , Lipman D. J. . ( 1990;). Basic local alignment search tool. J Mol Biol 215: 403–410 [CrossRef] [PubMed].
    [Google Scholar]
  3. Altschul S. F. , Madden T. L. , Schäffer A. A. , Zhang J. , Zhang Z. , Miller W. , Lipman D. J. . ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402 [CrossRef] [PubMed].
    [Google Scholar]
  4. Buck J. D. . ( 1982;). Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44: 992–993 [PubMed].
    [Google Scholar]
  5. Caro-Quintero A. , Ritalahti K. M. , Cusick K. D. , Löffler F. E. , Konstantinidis K. T. . ( 2012;). The chimeric genome of Sphaerochaeta: nonspiral spirochetes that break with the prevalent dogma in spirochete biology. MBio 3: e00025–12 [CrossRef] [PubMed].
    [Google Scholar]
  6. Cline J. D. . ( 1969;). Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14: 454–458 [CrossRef].
    [Google Scholar]
  7. Dewhirst F. E. , Klein E. A. , Thompson E. C. , Blanton J. M. , Chen T. , Milella L. , Buckley C. M. F. , Davis I. J. , Bennett M. L. , Marshall-Jones Z. V. . ( 2012;). The canine oral microbiome. PLoS One 7: e36067 [CrossRef] [PubMed].
    [Google Scholar]
  8. Dröge S. , Fröhlich J. , Radek R. , König H. . ( 2006;). Spirochaeta coccoides sp. nov., a novel coccoid spirochete from the hindgut of the termite Neotermes castaneus . Appl Environ Microbiol 72: 392–397 [CrossRef] [PubMed].
    [Google Scholar]
  9. Franzmann P. D. , Dobson S. J. . ( 1992;). Cell wall-less, free-living spirochetes in Antarctica. FEMS Microbiol Lett 76: 289–292 [CrossRef] [PubMed].
    [Google Scholar]
  10. Hungate R. E. . ( 1969;). A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B 117–132.[CrossRef]
    [Google Scholar]
  11. Kobayashi H. , Saito N. , Fu Q. , Kawaguchi H. , Vilcaez J. , Wakayama T. , Maeda H. , Sato K. . ( 2013;). Bio-electrochemical property and phylogenetic diversity of microbial communities associated with bioelectrodes of an electromethanogenic reactor. J Biosci Bioeng 116: 114–117 [CrossRef] [PubMed].
    [Google Scholar]
  12. Lane D. J. . ( 1991;). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E. , Goodfellow M. . Chichester: Wiley;.
    [Google Scholar]
  13. Leadbetter J. R. , Breznak J. A. . ( 1996;). Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes . Appl Environ Microbiol 62: 3620–3631 [PubMed].
    [Google Scholar]
  14. Leaver M. , Domínguez-Cuevas P. , Coxhead J. M. , Daniel R. A. , Errington J. . ( 2009;). Life without a wall or division machine in Bacillus subtilis . Nature 457: 849–853 [CrossRef] [PubMed].
    [Google Scholar]
  15. Li Z. , Suzuki D. , Zhang C. , Yoshida N. , Yang S. , Katayama A. . ( 2013;). Involvement of Dehalobacter strains in the anaerobic dechlorination of 2,4,6-trichlorophenol. J Biosci Bioeng 116: 602–609 [CrossRef] [PubMed].
    [Google Scholar]
  16. Liu J. , Wu W. , Chen C. , Sun F. , Chen Y. . ( 2011;). Prokaryotic diversity, composition structure, and phylogenetic analysis of microbial communities in leachate sediment ecosystems. Appl Microbiol Biotechnol 91: 1659–1675 [CrossRef] [PubMed].
    [Google Scholar]
  17. Lovley D. R. , Phillips E. J. P. . ( 1986;). Availability of ferric iron for microbial reduction in bottom sediments of the freshwater tidal Potomac river. Appl Environ Microbiol 52: 751–757 [PubMed].
    [Google Scholar]
  18. Marmur J. . ( 1961;). A procedure for the isolation deoxyribonucleic acid from micro organisms. J Mol Biol 3: 208–218 [CrossRef].
    [Google Scholar]
  19. Mesbah N. M. , Whitman W. B. , Mesbah M. . ( 2011;). Determination of the G+C content of prokaryotes. Methods Microbiol 38: 299–324 [CrossRef].
    [Google Scholar]
  20. Minnikin D. E. , Collins M. D. , Goodfellow M. . ( 1979;). Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Bacteriol 47: 87–95 [CrossRef].
    [Google Scholar]
  21. Minnikin D. E. , O'Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J. H. . ( 1984;). An intergrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  22. Miyazaki M. , Sakai S. , Ritalahti K. M. , Saito Y. , Yamanaka Y. , Saito Y. , Tame A. , Uematsu K. , Löffler F. E. , other authors . ( 2014;). Sphaerochaeta multiformis sp. nov., an anaerobic, psychrophilic bacterium isolated from subseafloor sediment, and emended description of the genus Sphaerochaeta . Int J Syst Evol Microbiol 64: 4147–4154 [CrossRef] [PubMed].
    [Google Scholar]
  23. Murray R. G. E. , Doetsch R. N. , Robinow C. F. . ( 1994;). Determinative and cytological microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  24. Murray A. E. , Kenig F. , Fritsen C. H. , McKay C. P. , Cawley K. M. , Edwards R. , Kuhn E. , McKnight D. M. , Ostrom N. E. , other authors . ( 2012;). Microbial life at -13°C in the brine of an ice-sealed Antarctic lake. Proc Natl Acad Sci U S A 109: 20626–20631 [CrossRef] [PubMed].
    [Google Scholar]
  25. Owen R. J. , Pitcher D. . ( 1985;). Current methods for estimating DNA base composition and levels of DNA-DNA hybridization. . In Chemical Methods in Bacterial Systematics, pp. 67–93. Edited by Goodfellow M. , Minnikin E. . London: Academic Press;.
    [Google Scholar]
  26. Reynolds E. S. . ( 1963;). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17: 208–212 [CrossRef] [PubMed].
    [Google Scholar]
  27. Ritalahti K. M. , Justicia-Leon S. D. , Cusick K. D. , Ramos-Hernandez N. , Rubin M. , Dornbush J. , Löffler F. E. . ( 2012;). Sphaerochaeta globosa gen. nov., sp. nov. and Sphaerochaeta pleomorpha sp. nov., free-living, spherical spirochaetes. Int J Syst Evol Microbiol 62: 210–216 [CrossRef] [PubMed].
    [Google Scholar]
  28. Rivière D. , Desvignes V. , Pelletier E. , Chaussonnerie S. , Guermazi S. , Weissenbach J. , Li T. , Camacho P. , Sghir A. . ( 2009;). Towards the definition of a core of microorganisms involved in anaerobic digestion of sludge. ISME J 3: 700–714 [CrossRef] [PubMed].
    [Google Scholar]
  29. Rivkina E. , Shcherbakova V. , Laurinavichius K. , Petrovskaya L. , Krivushin K. , Kraev G. , Pecheritsina S. , Gilichinsky D. . ( 2007;). Biogeochemistry of methane and methanogenic archaea in permafrost. FEMS Microbiol Ecol 61: 1–15 [CrossRef] [PubMed].
    [Google Scholar]
  30. Rosselló-Móra R. , Urdiain M. , López-López A. . ( 2011;). DNA-DNA hybridization. Methods Microbiol 38: 325–347.[CrossRef]
    [Google Scholar]
  31. Sambrook J. , Fritsch E. F. , Maniatis T. . ( 1989;). Molecular Cloning: a Laboratory Manual , 2nd edn.. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  32. Slobodkina G. B. , Panteleeva A. N. , Kostrikina N. A. , Kopitsyn D. S. , Bonch-Osmolovskaya E. A. , Slobodkin A. I. . ( 2013;). Tepidibacillus fermentans gen. nov., sp. nov.: a moderately thermophilic anaerobic and microaerophilic bacterium from an underground gas storage. Extremophiles 17: 833–839 [CrossRef] [PubMed].
    [Google Scholar]
  33. Tamura K. , Stecher G. , Peterson D. , Filipski A. , Kumar S. . ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  34. Tang Y. Q. , Li Y. , Zhao J. Y. , Chi C. Q. , Huang L. X. , Dong H. P. , Wu X. L. . ( 2012;). Microbial communities in long-term, water-flooded petroleum reservoirs with different in situ temperatures in the Huabei Oilfield, China. PLoS One 7: e33535 [CrossRef] [PubMed].
    [Google Scholar]
  35. Widdel F. , Pfennig N. . ( 1981;). Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 129: 395–400 [CrossRef] [PubMed].
    [Google Scholar]
  36. Yan L. , Gao Y. , Wang Y. , Liu Q. , Sun Z. , Fu B. , Wen X. , Cui Z. , Wang W. . ( 2012;). Diversity of a mesophilic lignocellulolytic microbial consortium which is useful for enhancement of biogas production. Bioresour Technol 111: 49–54 [CrossRef] [PubMed].
    [Google Scholar]
  37. Zhilina T. N. , Zavarzin G. A. . ( 1979;). [Mycoplasma in methanosarcina cultures]. Mikrobiologiia 48: 558–561 (in Russian) [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000575
Loading
/content/journal/ijsem/10.1099/ijsem.0.000575
Loading

Data & Media loading...

Supplementary Data



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error