1887

Abstract

A Gram-staining-negative and halotolerant bacterium, designated SN2, capable of biodegrading polycyclic aromatic hydrocarbons, was isolated from a tidal flat contaminated with crude oil in Korea. Cells were strictly aerobic, catalase- and oxidase-positive, motile rods, with a single polar flagellum. Growth was observed at 4–37 °C (optimum, 25–30 °C) at pH 6.0–9.0 (optimum, pH 7.0–7.5) and in the presence of 0.5–9.0 % (w/v) NaCl (optimum, 2.0 %). Only ubiquinone 8 was detected as the isoprenoid quinone, and summed feature 3 (comprising Cω7 and/or iso-C 2-OH), C, Cω7 and C were observed as the major cellular fatty acids. The major polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol, a glycolipid, an aminolipid and three unidentified lipids. The DNA G+C content was 43.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain SN2 formed a phylogenetic lineage with and within the genus , which was consistent with multilocus phylogenetic and MALDI-TOF MS analyses. Strain SN2 was most closely related to the type strains of , and , with 16S rRNA gene sequence similarities of 99.5, 99.3 and 98.4 % and DNA–DNA relatedness of 48.7 ± 6.6, 24.9 ± 7.5 and 27.9 ± 8.4 %, respectively. In conclusion, strain SN2 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is SN2 ( = KCTC 11700BP = JCM 17741 = KACC 18427).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000563
2015-11-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/11/4208.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000563&mimeType=html&fmt=ahah

References

  1. Acinas S.G., Antón J., Rodríguez-Valera F.. ( 1999;). Diversity of free-living and attached bacteria in offshore Western Mediterranean waters as depicted by analysis of genes encoding 16S rRNA. Appl Environ Microbiol 65: 514–522 [PubMed].
    [Google Scholar]
  2. Baumann P., Baumann L., Bowditch R.D., Beaman B.. ( 1984;). Taxonomy of Alteromonas: A. nigrifaciens sp. nov., nom. rev., A. macleodii; and A. haloplanktis. Int J Syst Bacteriol 34: 145–149 [CrossRef].
    [Google Scholar]
  3. Bowman J.P., McMeekin T.A.. ( 2005;). Genus I. Genus Alteromonas Gauthier, Gauthier and Christen 1995a, 760VP. . In Bergey's Manual of Systematic Bacteriology, vol. 2B, , 2nd edn.., pp. 444–447. Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M.. New York: Springer;.
    [Google Scholar]
  4. Chiu H.-H., Shieh W.Y., Lin S.Y., Tseng C.-M., Chiang P.-W., Wagner-Döbler I.. ( 2007;). Alteromonas tagae sp. nov. and Alteromonas simiduii sp. nov., mercury-resistant bacteria isolated from a Taiwanese estuary. Int J Syst Evol Microbiol 57: 1209–1216 [CrossRef] [PubMed].
    [Google Scholar]
  5. Collins J.F., Brown J.P., Alexeeff G.V., Salmon A.G.. ( 1998;). Potency equivalency factors for some polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbon derivatives. Regul Toxicol Pharmacol 28: 45–54 [CrossRef] [PubMed].
    [Google Scholar]
  6. Cui Z., Lai Q., Dong C., Shao Z.. ( 2008;). Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from deep sea sediments of the Middle Atlantic Ridge. Environ Microbiol 10: 2138–2149 [CrossRef] [PubMed].
    [Google Scholar]
  7. Felsenstein J.. ( 2002;). phylip (phylogeny inference package), version 3.6a. . In Department of Genome Sciences Seattle, WA, USA: University of Washington;.
    [Google Scholar]
  8. García-Martínez J., Acinas S.G., Massana R., Rodríguez-Valera F.. ( 2002;). Prevalence and microdiversity of Alteromonas macleodii-like microorganisms in different oceanic regions. Environ Microbiol 4: 42–50 [CrossRef] [PubMed].
    [Google Scholar]
  9. Geiselbrecht A.D., Hedlund B.P., Tichi M.A., Staley J.T.. ( 1998;). Isolation of marine polycyclic aromatic hydrocarbon (PAH)-degrading Cycloclasticus strains from the Gulf of Mexico and comparison of their PAH degradation ability with that of Puget Sound Cycloclasticus strains. Appl Environ Microbiol 64: 4703–4710 [PubMed].
    [Google Scholar]
  10. Gomori G.. ( 1955;). Preparation of buffers for use in enzyme studies. Methods Enzymol 1: 138–146 [CrossRef].
    [Google Scholar]
  11. Gutierrez T., Singleton D.R., Berry D., Yang T., Aitken M.D., Teske A.. ( 2013;). Hydrocarbon-degrading bacteria enriched by the Deepwater Horizon oil spill identified by cultivation and DNA-SIP. ISME J 7: 2091–2104 [CrossRef] [PubMed].
    [Google Scholar]
  12. Haeseler F., Blanchet D., Druelle V., Werner P., Vandecasteele J.-P.. ( 1999;). Ecotoxicological assessment of soils of former manufactured gas plant sites: bioremediation potential and pollutant mobility. Environ Sci Technol 33: 4379–4384 [CrossRef].
    [Google Scholar]
  13. Hedlund B.P., Geiselbrecht A.D., Bair T.J., Staley J.T.. ( 1999;). Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. Appl Environ Microbiol 65: 251–259 [PubMed].
    [Google Scholar]
  14. Ivanova E.P., Bowman J.P., Lysenko A.M., Zhukova N.V., Gorshkova N.M., Sergeev A.F., Mikhailov V.V.. ( 2005;). Alteromonas addita sp. nov. Int J Syst Evol Microbiol 55: 1065–1068 [CrossRef] [PubMed].
    [Google Scholar]
  15. Ivanova E.P., López-Pérez M., Zabalos M., Nguyen S.H., Webb H.K., Ryan J., Lagutin K., Vyssotski M., Crawford R.J., Rodriguez-Valera F.. ( 2015;). Ecophysiological diversity of a novel member of the genus Alteromonas, and description of Alteromonas mediterranea sp. nov. Antonie van Leeuwenhoek 107: 119–132 [CrossRef] [PubMed].
    [Google Scholar]
  16. Jeon C.O., Park W., Padmanabhan P., DeRito C., Snape J.R., Madsen E.L.. ( 2003;). Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment. Proc Natl Acad Sci U S A 100: 13591–13596 [CrossRef] [PubMed].
    [Google Scholar]
  17. Jin H.M., Jeong H., Moon E.-J., Math R.K., Lee K., Kim H.-J., Jeon C.O., Oh T.K., Kim J.F.. ( 2011;). Complete genome sequence of the polycyclic aromatic hydrocarbon-degrading bacterium Alteromonas sp. strain SN2. J Bacteriol 193: 4292–4293 [CrossRef] [PubMed].
    [Google Scholar]
  18. Jin H.M., Kim J.M., Lee H.J., Madsen E.L., Jeon C.O.. ( 2012;). Alteromonas as a key agent of polycyclic aromatic hydrocarbon biodegradation in crude oil-contaminated coastal sediment. Environ Sci Technol 46: 7731–7740 [CrossRef] [PubMed].
    [Google Scholar]
  19. Jin H.M., Choi E.J., Jeon C.O.. ( 2013;). Isolation of a BTEX-degrading bacterium, Janibacter sp. SB2, from a sea-tidal flat and optimization of biodegradation conditions. Bioresour Technol 145: 57–64 [CrossRef] [PubMed].
    [Google Scholar]
  20. Jin H.M., Jeong H.I., Jeon C.O.. ( 2015;). Aliiglaciecola aliphaticivorans sp. nov., an aliphatic hydrocarbon-degrading bacterium, isolated from a sea-tidal flat and emended description of the genus Aliiglaciecola Jean et al., 2013. Int J Syst Evol Microbiol 65: 1550–1555 [CrossRef] [PubMed].
    [Google Scholar]
  21. Kim O.S., Cho Y.J., Lee K., Yoon S.H., Kim M., Na H., Park S.C., Jeon Y.S., Lee J.H., other authors. ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  22. Kim M., Oh H.-S., Park S.-C., Chun J.. ( 2014;). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64: 346–351 [CrossRef] [PubMed].
    [Google Scholar]
  23. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19: 161–207 [CrossRef].
    [Google Scholar]
  24. Lányi B.. ( 1987;). Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19: 1–67 [CrossRef].
    [Google Scholar]
  25. Lee S.H., Shim J.K., Kim J.M., Choi H.-K.. et al. & Jeon C.O.., ( 2011;). Henriciella litoralis sp. nov., isolated from a tidal flat, transfer of Maribaculum marinum Lai .2009 to the genus Henriciella as Henriciella aquimarina nom. nov. and emended description of the genus Henriciella. Int J Syst Evol Microbiol 61: 722–727 [CrossRef] [PubMed].
    [Google Scholar]
  26. Lo N., Kang H.J., Jeon C.O.., ( 2014;). Zhongshania aliphaticivorans sp. nov. an aliphatic hydrocarbon-degrading bacterium isolated from marine sediment, and transfer ofSpongiibacter borealis Jang 2011 to the genus Zhongshania as Zhongshania borealis comb. nov. Int J Syst Evol Microbiol 64: 3768–3774 [CrossRef] [PubMed].
    [Google Scholar]
  27. López-López A., Bartual S.G., Stal L., Onyshchenko O., Rodríguez-Valera F.. ( 2005;). Genetic analysis of housekeeping genes reveals a deep-sea ecotype of Alteromonas macleodii in the Mediterranean Sea. Environ Microbiol 7: 649–659 [CrossRef] [PubMed].
    [Google Scholar]
  28. Martínez-Checa F., Béjar V., Llamas I., Del Moral A., Quesada E.. ( 2005;). Alteromonas hispanica sp. nov., a polyunsaturated-fatty-acid-producing, halophilic bacterium isolated from Fuente de Piedra, southern Spain. Int J Syst Evol Microbiol 55: 2385–2390 [CrossRef] [PubMed].
    [Google Scholar]
  29. Math R.K., Jin H.M., Kim J.M., Hahn Y., Park W., Madsen E.L., Jeon C.O.. ( 2012;). Comparative genomics reveals adaptation by Alteromonas sp. SN2 to marine tidal-flat conditions: cold tolerance and aromatic hydrocarbon metabolism. PLoS One 7: e35784 [CrossRef] [PubMed].
    [Google Scholar]
  30. Matsuyama H., Minami H., Sakaki T., Kasahara H., Baba S., Ishimaru S., Hirota K., Yumoto I.. ( 2015;). Alteromonas gracilis sp. nov., a marine polysaccharide-producing bacterium. Int J Syst Evol Microbiol 65: 1498–1503 [CrossRef] [PubMed].
    [Google Scholar]
  31. Minnikin D.E., Patel P.V., Alshamaony L., Goodfellow M.. ( 1977;). Polar lipid composition in the classification of Nocardia and related bacteria. Int J Syst Bacteriol 27: 104–117 [CrossRef].
    [Google Scholar]
  32. Nawrocki E.P., Eddy S.R.. ( 2007;). Query-dependent banding (QDB) for faster RNA similarity searches. PLOS Comput Biol 3: e56 [CrossRef] [PubMed].
    [Google Scholar]
  33. Ng H.J., Webb H.K., Crawford R.J., Malherbe F., Butt H., Knight R., Mikhailov V.V., Ivanova E.P.. ( 2013;). Updating the taxonomic toolbox: classification of Alteromonas spp. using multilocus phylogenetic analysis and MALDI-TOF mass spectrometry. Antonie van Leeuwenhoek 103: 265–275 [CrossRef] [PubMed].
    [Google Scholar]
  34. Parte A.C.. ( 2014;). LPSN – list of prokaryotic names with standing in nomenclature. Nucleic Acids Res 42: (D1), D613–D616, [CrossRef] [PubMed].
    [Google Scholar]
  35. Sasser M.. ( 1990;). Identification of bacteria by gas chromatography of cellular fatty acids. In MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  36. Smibert R.M., Krieg N.R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R.. Washington, DC: American Society for Microbiology;.
    [Google Scholar]
  37. Sohn J.H., Kwon K.K., Kang J.H., Jung H.B., Kim S.J.. ( 2004;). Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int J Syst Evol Microbiol 54: 1483–1487 [CrossRef] [PubMed].
    [Google Scholar]
  38. Stackebrandt E., Ebers J.. ( 2006;). Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33: 152–155.
    [Google Scholar]
  39. Stackebrandt E., Frederiksen W., Garrity G.M., Grimont P.A.D., Kämpfer P., Maiden M.C.J., Nesme X., Rosselló-Mora R., Swings J., other authors. ( 2002;). Report of the ad hoc committee for the reevaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52: 1043–1047 [PubMed].
    [Google Scholar]
  40. Stamatakis A., Ott M., Ludwig T.. ( 2005;). RAxML-OMP: an efficient program for phylogenetic inference on SMPs. . In Parallel Computing Technologies (Lecture Notes in Computer Science), vol. 3606, pp. 288–302. [CrossRef] Edited by Malyshkin V.. Berlin, Heidelberg: Springer;.
    [Google Scholar]
  41. Van Trappen S., Tan T.-L., Yang J., Mergaert J., Swings J.. ( 2004;). Alteromonas stellipolaris sp. nov., a novel, budding, prosthecate bacterium from Antarctic seas, and emended description of the genus Alteromonas. Int J Syst Evol Microbiol 54: 1157–1163 [CrossRef] [PubMed].
    [Google Scholar]
  42. Vandecandelaere I., Nercessian O., Segaert E., Achouak W., Mollica A., Faimali M., De Vos P., Vandamme P.. ( 2008;). Alteromonas genovensis sp. nov., isolated from a marine electroactive biofilm and emended description of Alteromonas macleodii Baumann et al. 1972 (Approved Lists 1980). Int J Syst Evol Microbiol 58: 2589–2596 [CrossRef] [PubMed].
    [Google Scholar]
  43. Yoon J.-H., Kim I.-G., Kang K.H., Oh T.-K., Park Y.-H.. ( 2003;). Alteromonas marina sp. nov., isolated from sea water of the East Sea in Korea. Int J Syst Evol Microbiol 53: 1625–1630 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000563
Loading
/content/journal/ijsem/10.1099/ijsem.0.000563
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error