1887

Abstract

A novel bacterium, designated DCY95, was isolated from ginseng-cultivated soil in Quang Nam province, Vietnam. On the basis of 16S rRNA and gene sequence analysis, this isolate was assigned to the genus and found to be closely related to SY01 (97.1 % 16S rRNA gene sequence similarity) and THMBG22 (96.4 %). The partial gene of DCY95 possessed 69.6–83.9 % sequence identity to those of other members of the genus . Strain DCY95 was Gram-reaction-negative, catalase-negative, oxidase-positive, strictly aerobic, rod-shaped and motile by means of peritrichous flagella. Ellipsoidal free spores or subterminal endospores were produced in sporangia. MK-7 was the diagnostic menaquinone. The cell-wall peptidoglycan contained -diamonopimelic acid as the diamino acid. Whole-cell sugars comprised ribose, mannose and glucose. The major cellular fatty acids were anteiso-C, iso-C and C. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, three unidentified aminophospholipids, and two unidentified phospholipids. The genomic DNA G+C content was 60.7 ± 0.9 mol%. Phenotypic and chemotaxonomic results placed strain DCY95 within the genus . However, DNA–DNA relatedness values between strain DCY95 and KACC 14895 or NBRC 108766 were lower than 36 %. The low DNA relatedness data in combination with phylogenetic and (GTG)-PCR analyses, as well as biochemical tests, indicated that strain DCY95 could not be assigned to any recognized species. In conclusion, the results in this study support the classification of strain DCY95 as a representative of a novel species within the genus , for which the name is proposed. The type strain is DCY95 ( = KCTC 33581 = DSM 29477).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijsem.0.000540
2015-11-01
2020-01-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/65/11/4080.html?itemId=/content/journal/ijsem/10.1099/ijsem.0.000540&mimeType=html&fmt=ahah

References

  1. Ash C. , Priest F.G. , Collins M.D. . ( 1993;). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus . Antonie van Leeuwenhoek 64: 253–260 [CrossRef] [PubMed].
    [Google Scholar]
  2. Ash C. , Priest F.G. , Collins M.D. . ( 1994;). Paenibacillus gen. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB, List 51. Int J Syst Bacteriol 44: 852 [CrossRef].
    [Google Scholar]
  3. Baek S.H. , Yi T.H. , Lee S.T. , Im W.T. . ( 2010;). Paenibacillus pocheonensis sp. nov., a facultative anaerobe isolated from soil of a ginseng field. Int J Syst Evol Microbiol 60: 1163–1167 [CrossRef] [PubMed].
    [Google Scholar]
  4. Barrow G. I. , Feltham R. K. A. . (editors) ( 1993;). Cowan and Steel's Manual for the Identification of Medical Bacteria , 3rd edn.., Cambridge: Cambridge University Press; [CrossRef].
    [Google Scholar]
  5. Behrendt U. , Schumann P. , Stieglmeier M. , Pukall R. , Augustin J. , Spröer C. , Schwendner P. , Moissl-Eichinger C. , Ulrich A. . ( 2010;). Characterization of heterotrophic nitrifying bacteria with respiratory ammonification and denitrification activity—description of Paenibacillus uliginis sp. nov., an inhabitant of fen peat soil and Paenibacillus purispatii sp. nov., isolated from a spacecraft assembly clean room. Syst Appl Microbiol 33: 328–336 [CrossRef] [PubMed].
    [Google Scholar]
  6. Berge O. , Guinebretière M.-H. , Achouak W. , Normand P. , Heulin T. . ( 2002;). Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int J Syst Evol Microbiol 52: 607–616 [PubMed].[CrossRef]
    [Google Scholar]
  7. Collins M.D. , Pirouz T. , Goodfellow M. , Minnikin D.E. . ( 1977;). Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100: 221–230 [CrossRef] [PubMed].
    [Google Scholar]
  8. Dsouza M. , Taylor M.W. , Ryan J. , MacKenzie A. , Lagutin K. , Anderson R.F. , Turner S.J. , Aislabie J. . ( 2014;). Paenibacillus darwinianus sp. nov., isolated from gamma-irradiated Antarctic soil. Int J Syst Evol Microbiol 64: 1406–1411 [CrossRef] [PubMed].
    [Google Scholar]
  9. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39: 224–229 [CrossRef].
    [Google Scholar]
  10. Felsenstein J. . ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17: 368–376 [CrossRef] [PubMed].
    [Google Scholar]
  11. Felsenstein J. . ( 1985;). Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39: 783–791 [CrossRef].
    [Google Scholar]
  12. Fitch W.M. . ( 1971;). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20: 406–416 [CrossRef].
    [Google Scholar]
  13. Gomori G. . ( 1955;). Preparation of buffers for use in enzyme studies. Methods Enzymol 1: 138–146 [CrossRef].
    [Google Scholar]
  14. Hall T.A. . ( 1999;). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41: 95–98.
    [Google Scholar]
  15. Hong Y.Y. , Ma Y.C. , Zhou Y.G. , Gao F. , Liu H.C. , Chen S.F. . ( 2009;). Paenibacillus sonchi sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sonchus oleraceus . Int J Syst Evol Microbiol 59: 2656–2661 [CrossRef] [PubMed].
    [Google Scholar]
  16. Hu X.F. , Li S.X. , Wu J.G. , Wang J.F. , Fang Q.L. , Chen J.S. . ( 2010;). Transfer of Bacillus mucilaginosus and Bacillus edaphicus to the genus Paenibacillus as Paenibacillus mucilaginosus comb. nov. and Paenibacillus edaphicus comb. nov. Int J Syst Evol Microbiol 60: 8–14 [CrossRef] [PubMed].
    [Google Scholar]
  17. Jin H.J. , Lv J. , Chen S.F. . ( 2011;). Paenibacillus sophorae sp. nov., a nitrogen-fixing species isolated from the rhizosphere of Sophora japonica . Int J Syst Evol Microbiol 61: 767–771 [CrossRef] [PubMed].
    [Google Scholar]
  18. Kim M.K. , Im W.T. , Ohta H. , Lee M. , Lee S.T. . ( 2005;). Sphingopyxis granuli sp. nov., a β-glucosidase-producing bacterium in the family Sphingomonadaceae in α-4 subclass of the Proteobacteria . J Microbiol 43: 152–157 [PubMed].
    [Google Scholar]
  19. Kim M.K. , Kim Y.-A. , Park M.-J. , Yang D.-C. . ( 2008;). Paenibacillus ginsengihumi sp. nov., a bacterium isolated from soil in a ginseng field. Int J Syst Evol Microbiol 58: 1164–1168 [CrossRef] [PubMed].
    [Google Scholar]
  20. Kim B.-C. , Lee K.H. , Kim M.N. , Kim E.-M. , Rhee M.-S. , Kwon O.Y. , Shin K.-S. . ( 2009;). Paenibacillus pinihumi sp. nov., a cellulolytic bacterium isolated from the rhizosphere of Pinus densiflora . J Microbiol 47: 530–535 [CrossRef] [PubMed].
    [Google Scholar]
  21. Kim O.S. , Cho Y.J. , Lee K. , Yoon S.H. , Kim M. , Na H. , Park S.C. , Jeon Y.S. , Lee J.H. , other authors . ( 2012;). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int J Syst Evol Microbiol 62: 716–721 [CrossRef] [PubMed].
    [Google Scholar]
  22. Kim J.-H. , Kang H. , Kim W. . ( 2014;). Paenibacillus doosanensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 64: 1271–1277 [CrossRef] [PubMed].
    [Google Scholar]
  23. Komagata K. , Suzuki K. . ( 1987;). Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 19: 161–207 [CrossRef].
    [Google Scholar]
  24. Lányí B. . ( 1987;). Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19: 1–67 [CrossRef].
    [Google Scholar]
  25. Larkin M.A. , Blackshields G. , Brown N.P. , Chenna R. , McGettigan P.A. , McWilliam H. , Valentin F. , Wallace I.M. , Wilm A. , other authors . ( 2007;). Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948 [CrossRef] [PubMed].
    [Google Scholar]
  26. Le T.H. , Lee S.Y. , Kim T.R. , Kim J.Y. , Kwon S.W. , Nguyen N.K. , Park J.H. , Nguyen M.D. . ( 2014;). Processed Vietnamese ginseng: preliminary results in chemistry and biological activity. J Ginseng Res 38: 154–159 [CrossRef] [PubMed].
    [Google Scholar]
  27. Lee J.C. , Kim C.J. , Yoon K.H. . ( 2011;). Paenibacillus telluris sp. nov., a novel phosphate-solubilizing bacterium isolated from soil. J Microbiol 49: 617–621 [CrossRef] [PubMed].
    [Google Scholar]
  28. Levine M. , Epstein S.S. , Vaughn R.H. . ( 1934;). Differential reactions in the colon group of bacteria. Am J Public Health Nations Health 24: 505–510 [CrossRef] [PubMed].
    [Google Scholar]
  29. Lim J.-M. , Jeon C.O. , Lee J.-C. , Xu L.-H. , Jiang C.-L. , Kim C.-J. . ( 2006;). Paenibacillus gansuensis sp. nov., isolated from desert soil of Gansu Province in China. Int J Syst Evol Microbiol 56: 2131–2134 [CrossRef] [PubMed].
    [Google Scholar]
  30. Logan N.A. , De*Clerck E. , Lebbe L. , Verhelst A. , Goris J. , Forsyth G. , Rodríguez-Díaz M. , Heyndrickx M. , De Vos P. . ( 2004;). Paenibacillus cineris sp. nov. and Paenibacillus cookii sp. nov., from Antarctic volcanic soils and a gelatin-processing plant. Int J Syst Evol Microbiol 54: 1071–1076 [CrossRef] [PubMed].
    [Google Scholar]
  31. Ma Y.C. , Chen S.F. . ( 2008;). Paenibacillus forsythiae sp. nov., a nitrogen-fixing species isolated from rhizosphere soil of Forsythia mira . Int J Syst Evol Microbiol 58: 319–323 [CrossRef] [PubMed].
    [Google Scholar]
  32. Ma Y. , Xia Z. , Liu X. , Chen S. . ( 2007;). Paenibacillus sabinae sp. nov., a nitrogen-fixing species isolated from the rhizosphere soils of shrubs. Int J Syst Evol Microbiol 57: 6–11 [CrossRef] [PubMed].
    [Google Scholar]
  33. Mesbah M. , Premachandran U. , Whitman W.B. . ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39: 159–167 [CrossRef].
    [Google Scholar]
  34. Mesbah N.M. , Whitman W.B. , Mesbah M. . ( 2011;). Determination of the G+C content of prokaryotes. Methods Microbiol 38: 299–324 [CrossRef].
    [Google Scholar]
  35. Minnikin D.E. , O'Donnell A.G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal A. , Parlett J.H. . ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2: 233–241 [CrossRef].
    [Google Scholar]
  36. Moon J.C. , Jung Y.J. , Jung J.H. , Jung H.S. , Cheong Y.R. , Jeon C.O. , Lee K.O. , Lee S.Y. . ( 2011;). Paenibacillus sacheonensis sp. nov., a xylanolytic and cellulolytic bacterium isolated from tidal flat sediment. Int J Syst Evol Microbiol 61: 2753–2757 [CrossRef] [PubMed].
    [Google Scholar]
  37. Nokhal T.H. , Schlegel H.G. . ( 1983;). Taxonomic study of Paracoccus denitrificans . Int J Syst Bacteriol 33: 26–37 [CrossRef].
    [Google Scholar]
  38. Prescott L.M. , Harley J.P. . ( 2001;). Endospore staining. . In Laboratory Exercises in Microbiology, pp. 61–62. Edited by Prescott L. M. , Harley J. P. . , 5th edn.., New York: McGraw-Hill;.
    [Google Scholar]
  39. Rivas R. , Mateos P.F. , Martínez-Molina E. , Velázquez E. . ( 2005;). Paenibacillus phyllosphaerae sp. nov., a xylanolytic bacterium isolated from the phyllosphere of Phoenix dactylifera . Int J Syst Evol Microbiol 55: 743–746 [CrossRef] [PubMed].
    [Google Scholar]
  40. Rivas R. , García-Fraile P. , Mateos P.F. , Martínez-Molina E. , Velázquez E. . ( 2006;). Paenibacillus cellulosilyticus sp. nov., a cellulolytic and xylanolytic bacterium isolated from the bract phyllosphere of Phoenix dactylifera . Int J Syst Evol Microbiol 56: 2777–2781 [CrossRef] [PubMed].
    [Google Scholar]
  41. Saitou N. , Nei M. . ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425 [PubMed].
    [Google Scholar]
  42. Sasser M. . ( 1990;). Identification of Bacteria by Gas Chromatography of Cellular Fatty acids MIDI Technical Note 101 Newark, DE: MIDI Inc;.
    [Google Scholar]
  43. Schumann P. . ( 2011;). Peptidoglycan structure. Methods Microbiol 38: 101–129 [CrossRef].
    [Google Scholar]
  44. Shida O. , Takagi H. , Kadowaki K. , Nakamura L.K. , Komagata K. . ( 1997;). Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus . Int J Syst Bacteriol 47: 289–298 [CrossRef] [PubMed].
    [Google Scholar]
  45. Staneck J.L. , Roberts G.D. . ( 1974;). Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28: 226–231 [PubMed].
    [Google Scholar]
  46. Tamura K. , Nei M. . ( 1993;). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10: 512–526 [PubMed].
    [Google Scholar]
  47. Tamura K. , Stecher G. , Peterson D. , Filipski A. , Kumar S. . ( 2013;). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  48. Ten L.N. , Baek S.-H. , Im W.-T. , Lee M. , Oh H.W. , Lee S.-T. . ( 2006;). Paenibacillus panacisoli sp. nov., a xylanolytic bacterium isolated from soil in a ginseng field in South Korea. Int J Syst Evol Microbiol 56: 2677–2681 [CrossRef] [PubMed].
    [Google Scholar]
  49. Tran Q.L. , Adnyana I.K. , Tezuka Y. , Nagaoka T. , Tran Q.K. , Kadota S. . ( 2001;). Triterpene saponins from Vietnamese ginseng (Panax vietnamensis) and their hepatocytoprotective activity. J Nat Prod 64: 456–461 [CrossRef] [PubMed].
    [Google Scholar]
  50. Vaz-Moreira I. , Faria C. , Nobre M.F. , Schumann P. , Nunes O.C. , Manaia C.M. . ( 2007;). Paenibacillus humicus sp. nov., isolated from poultry litter compost. Int J Syst Evol Microbiol 57: 2267–2271 [CrossRef] [PubMed].
    [Google Scholar]
  51. Versalovic J. , Schneider M. , de Bruijn F.J. , Lupski J.R. . ( 1994;). Genomic fingerprinting of bacteria using repetitive sequence based PCR (rep-PCR). Methods Mol Cell Biol 5: 25–40.
    [Google Scholar]
  52. Wayne L.G. , Brenner D.J. , Colwell R.R. , Grimont P.A.D. , Kandler O. , Krichevsky M.I. , Moore L.H. , Moore W.E.C. , Murray R.G.E. , other authors . ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematic. Int J Syst Evol Microbiol 37: 463–464.[CrossRef]
    [Google Scholar]
  53. Weisburg W.G. , Barns S.M. , Pelletier D.A. , Lane D.J. . ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173: 697–703 [PubMed].
    [Google Scholar]
  54. Wu Y.-F. , Wu Q.-L. , Liu S.-J. . ( 2013;). Paenibacillus taihuensis sp. nov., isolated from an eutrophic lake. Int J Syst Evol Microbiol 63: 3652–3658 [CrossRef] [PubMed].
    [Google Scholar]
  55. Yamamoto S. , Harayama S. . ( 1995;). PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61: 1104–1109 [PubMed].
    [Google Scholar]
  56. Yoon M.H. , Ten L.N. , Im W.T. . ( 2007;). Paenibacillus ginsengarvi sp. nov., isolated from soil from ginseng cultivation. Int J Syst Evol Microbiol 57: 1810–1814 [CrossRef] [PubMed].
    [Google Scholar]
  57. Zhang J. , Wang Z.T. , Yu H.M. , Ma Y. . ( 2013;). Paenibacillus catalpae sp. nov., isolated from the rhizosphere soil of Catalpa speciosa . Int J Syst Evol Microbiol 63: 1776–1781 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijsem.0.000540
Loading
/content/journal/ijsem/10.1099/ijsem.0.000540
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error